Author: A. P. Cracknell
Publisher: Elsevier
ISBN: 1483187292
Category : Technology & Engineering
Languages : en
Pages : 285
Book Description
Magnetism in Crystalline Materials covers the applications of the theory of groups of cambiant symmetry and the physical properties of magnetically ordered crystalline solids. This book is divided into eight chapters; the first of which discusses the macroscopic properties of magnetic crystals. The structures of magnetically ordered crystals are then explained; this topic is followed by discussions on the theory of corepresentations; magnetic phase transitions; and the tensor properties of magnetic crystals. This text also looks into topics on electrons, lattice vibrations, and spin waves. This selection will be valuable to physicists and to others interested in the magnetism of crystalline materials.
Magnetism in Crystalline Materials
Author: A. P. Cracknell
Publisher: Elsevier
ISBN: 1483187292
Category : Technology & Engineering
Languages : en
Pages : 285
Book Description
Magnetism in Crystalline Materials covers the applications of the theory of groups of cambiant symmetry and the physical properties of magnetically ordered crystalline solids. This book is divided into eight chapters; the first of which discusses the macroscopic properties of magnetic crystals. The structures of magnetically ordered crystals are then explained; this topic is followed by discussions on the theory of corepresentations; magnetic phase transitions; and the tensor properties of magnetic crystals. This text also looks into topics on electrons, lattice vibrations, and spin waves. This selection will be valuable to physicists and to others interested in the magnetism of crystalline materials.
Publisher: Elsevier
ISBN: 1483187292
Category : Technology & Engineering
Languages : en
Pages : 285
Book Description
Magnetism in Crystalline Materials covers the applications of the theory of groups of cambiant symmetry and the physical properties of magnetically ordered crystalline solids. This book is divided into eight chapters; the first of which discusses the macroscopic properties of magnetic crystals. The structures of magnetically ordered crystals are then explained; this topic is followed by discussions on the theory of corepresentations; magnetic phase transitions; and the tensor properties of magnetic crystals. This text also looks into topics on electrons, lattice vibrations, and spin waves. This selection will be valuable to physicists and to others interested in the magnetism of crystalline materials.
Experimental Techniques in Magnetism and Magnetic Materials
Author: S. B. Roy
Publisher: Cambridge University Press
ISBN: 1009276557
Category : Science
Languages : en
Pages :
Book Description
This book is written to introduce experimental magnetism in a comprehensive manner to advanced undergraduate, postgraduate, and doctoral students pursuing studies in physics, material sciences, and engineering. It is an excellent resource providing an overview of the various experimental techniques in magnetism and magnetic materials. The text is partitioned into three parts. Part I deals with a brief history of magnetism and magnetic materials along with their role in modern society. A concise account of their current technological applications is also provided. Part II focusses on the basic phenomena of magnetism. Part III consists of chapters discussing a variety of experimental practices needed to study the microscopic as well as macroscopic aspects of different kinds of magnetic phenomena and materials.
Publisher: Cambridge University Press
ISBN: 1009276557
Category : Science
Languages : en
Pages :
Book Description
This book is written to introduce experimental magnetism in a comprehensive manner to advanced undergraduate, postgraduate, and doctoral students pursuing studies in physics, material sciences, and engineering. It is an excellent resource providing an overview of the various experimental techniques in magnetism and magnetic materials. The text is partitioned into three parts. Part I deals with a brief history of magnetism and magnetic materials along with their role in modern society. A concise account of their current technological applications is also provided. Part II focusses on the basic phenomena of magnetism. Part III consists of chapters discussing a variety of experimental practices needed to study the microscopic as well as macroscopic aspects of different kinds of magnetic phenomena and materials.
Neutron Diffraction of Magnetic Materials
Author: Izyumov
Publisher: Springer Science & Business Media
ISBN: 1461536588
Category : Science
Languages : en
Pages : 349
Book Description
Detennination of the magnetic structure of magnetic materials is a fundamental problem that can be solved by magnetic neutron diffraction techniques. By magnetic structures we refer to the mutual alignment of the magnetic moments of the atoms in a crystal and their overall alignment relative to the crystallographic axes. Some indirect, tentative data on the magnetic structure of magnetic materials can be obtained from research on their magnetic, mechanical, thermal, and other properties. But only neutron diffraction is a unique direct method of detennining the magnetic structure of a crystal. The magnetic structure of more than one thousand crystals with magnetic order has been studied during 30 years of neutron diffraction research made on reactors in a large number of laboratories in the world. The results of this research work are extensively described in the handbook Magnetic Structures Determined by Neutron Diffraction [176]; in the present book, we will often refer to this handbook. The first extensive theoretical generalization of the principles of magnetic neutron diffraction and the results of research on magnetic structures appeared in the book by Yu. A. Izyumov and R. P. Ozerov Magnetic Neutron Diffraction [24, 134].
Publisher: Springer Science & Business Media
ISBN: 1461536588
Category : Science
Languages : en
Pages : 349
Book Description
Detennination of the magnetic structure of magnetic materials is a fundamental problem that can be solved by magnetic neutron diffraction techniques. By magnetic structures we refer to the mutual alignment of the magnetic moments of the atoms in a crystal and their overall alignment relative to the crystallographic axes. Some indirect, tentative data on the magnetic structure of magnetic materials can be obtained from research on their magnetic, mechanical, thermal, and other properties. But only neutron diffraction is a unique direct method of detennining the magnetic structure of a crystal. The magnetic structure of more than one thousand crystals with magnetic order has been studied during 30 years of neutron diffraction research made on reactors in a large number of laboratories in the world. The results of this research work are extensively described in the handbook Magnetic Structures Determined by Neutron Diffraction [176]; in the present book, we will often refer to this handbook. The first extensive theoretical generalization of the principles of magnetic neutron diffraction and the results of research on magnetic structures appeared in the book by Yu. A. Izyumov and R. P. Ozerov Magnetic Neutron Diffraction [24, 134].
Physics of Magnetism and Magnetic Materials
Author: K.H.J Buschow
Publisher: Springer Science & Business Media
ISBN: 0306484080
Category : Science
Languages : en
Pages : 175
Book Description
In this book, the fundamentals of magnetism are treated, starting at an introductory level. The origin of magnetic moments, the response to an applied magnetic field, and the various interactions giving rise to different types of magnetic ordering in solids are presented and many examples are given. Crystalline-electric-field effects are treated at a level that is sufficient to provide the basic knowledge necessary in understanding the properties of materials in which these effects play a role. Itinerant-electron magnetism is presented on a similar basis. Particular attention has been given to magnetocrystalline magnetic anisotropy and the magnetocaloric effect. Also, the usual techniques for magnetic measurements are presented. About half of the book is devoted to magnetic materials and the properties that make them suitable for numerous applications. The state of the art is presented of permanent magnets, high-density recording materials, soft-magnetic materials, Invar alloys and magnetostrictive materials. Many references are given.
Publisher: Springer Science & Business Media
ISBN: 0306484080
Category : Science
Languages : en
Pages : 175
Book Description
In this book, the fundamentals of magnetism are treated, starting at an introductory level. The origin of magnetic moments, the response to an applied magnetic field, and the various interactions giving rise to different types of magnetic ordering in solids are presented and many examples are given. Crystalline-electric-field effects are treated at a level that is sufficient to provide the basic knowledge necessary in understanding the properties of materials in which these effects play a role. Itinerant-electron magnetism is presented on a similar basis. Particular attention has been given to magnetocrystalline magnetic anisotropy and the magnetocaloric effect. Also, the usual techniques for magnetic measurements are presented. About half of the book is devoted to magnetic materials and the properties that make them suitable for numerous applications. The state of the art is presented of permanent magnets, high-density recording materials, soft-magnetic materials, Invar alloys and magnetostrictive materials. Many references are given.
Symmetry and Magnetism
Author: Robert R. Birss
Publisher: Elsevier Science & Technology
ISBN:
Category : Science
Languages : en
Pages : 282
Book Description
Publisher: Elsevier Science & Technology
ISBN:
Category : Science
Languages : en
Pages : 282
Book Description
Crystalline Electric Field Effects in f-Electron Magnetism
Author: Robert Guertin
Publisher: Springer Science & Business Media
ISBN: 1468486462
Category : Science
Languages : en
Pages : 571
Book Description
The present conference, the fourth successive on this subject, was organized to commemorate the 75th birthday of Professor Wtodzimierz Trzebiatowski, one of the pioneers in the field of f-electron materials structure, particularly in the magnetism of actinides. This volume contains 64 papers presented at the conference held in Wroctaw, Poland, September 22-25, 1981. Twenty-one were invited talks. About 100 participants from 13 countries attended the meeting during four days of lecture presentation (note these two numbers have been constant for the last two conferences). The conference consisted of sessions devoted to the investigation of crystalline electric fields and structural effects by spectroscopic techniques, neutron diffraction, magnetic, thermodynamic and electrical measurements all over broad temperature, magnetic field and pressure ranges. Materials investigated included rare earth intermetallics, hydrides, diluted systems and actinides, and among them some exhibited singlet ground state behavior. The experimental results were supplemented by theory. It is our pleasure to mention those persons who helped us make the conference successful. The International Advisory Com mittee included W.J.L. Buyers, B.R. Cooper, J.E. Crow, P. Fulde, A. Furrer, T. Kasuya, L. Kowalewski, G.R. Lander, R. Lemaire and D. Wohlleben. We thank them for valuable suggestions concerning invited speakers. We also wish to thank the co-workers of the In stitute for Low Temperature and Structure Research of the Polish Academy of Sciences in Wroclaw, especially A. Baran, M. Grzebyk, K.
Publisher: Springer Science & Business Media
ISBN: 1468486462
Category : Science
Languages : en
Pages : 571
Book Description
The present conference, the fourth successive on this subject, was organized to commemorate the 75th birthday of Professor Wtodzimierz Trzebiatowski, one of the pioneers in the field of f-electron materials structure, particularly in the magnetism of actinides. This volume contains 64 papers presented at the conference held in Wroctaw, Poland, September 22-25, 1981. Twenty-one were invited talks. About 100 participants from 13 countries attended the meeting during four days of lecture presentation (note these two numbers have been constant for the last two conferences). The conference consisted of sessions devoted to the investigation of crystalline electric fields and structural effects by spectroscopic techniques, neutron diffraction, magnetic, thermodynamic and electrical measurements all over broad temperature, magnetic field and pressure ranges. Materials investigated included rare earth intermetallics, hydrides, diluted systems and actinides, and among them some exhibited singlet ground state behavior. The experimental results were supplemented by theory. It is our pleasure to mention those persons who helped us make the conference successful. The International Advisory Com mittee included W.J.L. Buyers, B.R. Cooper, J.E. Crow, P. Fulde, A. Furrer, T. Kasuya, L. Kowalewski, G.R. Lander, R. Lemaire and D. Wohlleben. We thank them for valuable suggestions concerning invited speakers. We also wish to thank the co-workers of the In stitute for Low Temperature and Structure Research of the Polish Academy of Sciences in Wroclaw, especially A. Baran, M. Grzebyk, K.
Magnetic Molecular Materials
Author: D. Gatteschi
Publisher: Springer Science & Business Media
ISBN: 9401132542
Category : Science
Languages : en
Pages : 413
Book Description
One of the major challenges of science in the last few years of the second millennium is learning how to design materials which can fulfill specific tasks. Ambitious as it may be, the possibilities of success are not ne~li~ble provided that all the different expertises merge to overcome the limits of eXIsting disciplines and forming new paradigms science. The NATO Advanced Research Workshop on "Magnetic Molecular Materials" was organized with the above considerations in mind in order to determine which are the most appropriate synthetic strategies, experimental techniques of investigation, and theoretical models which are needed in order to develop new classes of magnetic materials which are based on molecules rather than on metallic or ionic lattices. Why molecules? The answer may be obvious: molecular chemistry in principle fine can tune the structures and the properties of complex aggregates, and nature already provides a large number of molecular aggregates which can perform the most disparate functions. The contributions collected in this book provide a rather complete view of the current research accomplishments of magnetic molecular materials. There are several different synthetic approaches which are followed ranging from purely organic to inorganic materials. Some encouraging successes have already been achieved, even if the critical temperatures below which magnetic order is observed still are in the range requiring liquid helium.
Publisher: Springer Science & Business Media
ISBN: 9401132542
Category : Science
Languages : en
Pages : 413
Book Description
One of the major challenges of science in the last few years of the second millennium is learning how to design materials which can fulfill specific tasks. Ambitious as it may be, the possibilities of success are not ne~li~ble provided that all the different expertises merge to overcome the limits of eXIsting disciplines and forming new paradigms science. The NATO Advanced Research Workshop on "Magnetic Molecular Materials" was organized with the above considerations in mind in order to determine which are the most appropriate synthetic strategies, experimental techniques of investigation, and theoretical models which are needed in order to develop new classes of magnetic materials which are based on molecules rather than on metallic or ionic lattices. Why molecules? The answer may be obvious: molecular chemistry in principle fine can tune the structures and the properties of complex aggregates, and nature already provides a large number of molecular aggregates which can perform the most disparate functions. The contributions collected in this book provide a rather complete view of the current research accomplishments of magnetic molecular materials. There are several different synthetic approaches which are followed ranging from purely organic to inorganic materials. Some encouraging successes have already been achieved, even if the critical temperatures below which magnetic order is observed still are in the range requiring liquid helium.
Modern Techniques for Characterizing Magnetic Materials
Author: Yimei Zhu
Publisher: Springer Science & Business Media
ISBN: 9781402080074
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Modern Techniques for Characterizing Magnetic Materials provides an extensive overview of novel characterization tools for magnetic materials including neutron, photon and electron scatterings and other microscopy techniques by world-renowned scientists. This interdisciplinary reference describes all available techniques to characterize and to understand magnetic materials, techniques that cover a wide range of length scales and belong to different scientific communities. The diverse contributions enhance cross-discipline communication, while also identifying both the drawbacks and advantages of different techniques, which can result in deriving effective combinations of techniques that are especially fruitful at nanometer scales. It will be a valuable resource for all graduate students, researchers, engineers and scientists who are interested in magnetic materials including their crystal structure, electronic structure, magnetization dynamics and their associated magnetic properties and underlying magnetism.
Publisher: Springer Science & Business Media
ISBN: 9781402080074
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Modern Techniques for Characterizing Magnetic Materials provides an extensive overview of novel characterization tools for magnetic materials including neutron, photon and electron scatterings and other microscopy techniques by world-renowned scientists. This interdisciplinary reference describes all available techniques to characterize and to understand magnetic materials, techniques that cover a wide range of length scales and belong to different scientific communities. The diverse contributions enhance cross-discipline communication, while also identifying both the drawbacks and advantages of different techniques, which can result in deriving effective combinations of techniques that are especially fruitful at nanometer scales. It will be a valuable resource for all graduate students, researchers, engineers and scientists who are interested in magnetic materials including their crystal structure, electronic structure, magnetization dynamics and their associated magnetic properties and underlying magnetism.
Magnetic Neutron Diffraction
Author: Yurii A. Izyumov
Publisher: Springer Science & Business Media
ISBN: 1468407120
Category : Science
Languages : en
Pages : 607
Book Description
The inter action between the magnetic field generated by the neutron and the magnetic moment of atoms containing unpaired electrons was experimentally demonstrated for the first time about twenty years ago. The basic theory describing such an in teraction had already been developed and the first nuclear reactors with large available thermal neutron fluxes had recently been con structed. The power of the magnetic neutron interaction for in vestigating the structure of magnetic materials was immediately recognized and put to use where possible. Neutron diffraction, however, was practicable only in countries with nuclear reactors. The earliest neutron determinations of magnetic ordering were hence primarily carried out at Oak Ridge and Brookhaven in the US, at Chalk River in Canada and at Harwell in England. Diffraction patterns from polycrystalline ferromagnets and antiferromagnets are interpretable if produced by simple spin arrays. More complex magnetic scattering patterns could often be unravelled, in terms of a three-dimensional array of atomic moments, if the specimen studied is a single crystal. The devel opment of sophisticated cryogenic equipment, with independently alignable magnetic fields, opened the way to greater complexity in the magnetic structures that could be successfully determined, as did also the introduction of polarized neutron beams. By the end of the 'sixties, many countries were contributing significantly to neutron diffraction studies of a wide variety of magnetic materials.
Publisher: Springer Science & Business Media
ISBN: 1468407120
Category : Science
Languages : en
Pages : 607
Book Description
The inter action between the magnetic field generated by the neutron and the magnetic moment of atoms containing unpaired electrons was experimentally demonstrated for the first time about twenty years ago. The basic theory describing such an in teraction had already been developed and the first nuclear reactors with large available thermal neutron fluxes had recently been con structed. The power of the magnetic neutron interaction for in vestigating the structure of magnetic materials was immediately recognized and put to use where possible. Neutron diffraction, however, was practicable only in countries with nuclear reactors. The earliest neutron determinations of magnetic ordering were hence primarily carried out at Oak Ridge and Brookhaven in the US, at Chalk River in Canada and at Harwell in England. Diffraction patterns from polycrystalline ferromagnets and antiferromagnets are interpretable if produced by simple spin arrays. More complex magnetic scattering patterns could often be unravelled, in terms of a three-dimensional array of atomic moments, if the specimen studied is a single crystal. The devel opment of sophisticated cryogenic equipment, with independently alignable magnetic fields, opened the way to greater complexity in the magnetic structures that could be successfully determined, as did also the introduction of polarized neutron beams. By the end of the 'sixties, many countries were contributing significantly to neutron diffraction studies of a wide variety of magnetic materials.
Magnetism in Carbon Nanostructures
Author: Frank Hagelberg
Publisher:
ISBN: 9781108218412
Category : TECHNOLOGY & ENGINEERING
Languages : en
Pages : 420
Book Description
A comprehensive survey of carbon nanostructure magnetism, emphasizing both the fundamental nature of the field and its groundbreaking nanotechnological applications.
Publisher:
ISBN: 9781108218412
Category : TECHNOLOGY & ENGINEERING
Languages : en
Pages : 420
Book Description
A comprehensive survey of carbon nanostructure magnetism, emphasizing both the fundamental nature of the field and its groundbreaking nanotechnological applications.