Author: Gang Ye
Publisher: Frontiers Media SA
ISBN: 283254956X
Category : Science
Languages : en
Pages : 162
Book Description
The pathogenic microbiome is the community of microorganisms that live in humans or animals and cause disease. These microorganisms include bacteria, viruses, fungi, protozoa, etc. They usually live in the host's skin, mouth, intestinal tract, genitourinary tract, etc. Normally, there is a state of equilibrium between the host and these microorganisms, but when this equilibrium is disturbed, these microorganisms become the pathogenic microbiome and cause disease. To advance the field of microbiome research, artificial intelligence methods, especially machine learning and deep learning, have recently been used as important tools due to their powerful predictive and informative potential. Classical machine learning algorithms such as linear regression, random forests, support vector machines, etc. perform well on microbiome data. However, as algorithms have been iteratively updated, these models have long been relegated to the basics. Linear regression models are now more often used to interpret these models more intuitively by using the output of other models as input. Deep learning is a branch of machine learning that involves a large number of neural network structures. Deep learning relies on neurons whose role is to transform the input and propagate it forward to the next neuron. Deep learning is currently being used with spectacular success in areas such as image recognition, text processing and automatic translation. As a result, a growing number of researchers are attempting to apply deep learning techniques to biomedical data analysis. Although there are still challenges in practical applications, such as model interpretability, data availability, model evaluation and selection, machine learning and deep learning are very promising tools in pathogenic microbiome research. This Research Topic, therefore, aims to contribute to the latest advances in machine learning, especially deep learning, and to explore new applications of related techniques in pathogenic microbiome research, trying to find relationships between microbiome and human health as well as the environment by studying high-throughput sequencing data of microbes, laying the foundation for further applications for subsequent treatment or forensic identification. We welcome submissions of Original Research, Brief Research Report, Review, Mini-Review, Methods, Perspective and Opinion articles that focus on, but are not limited to, the utilization of machine learning and deep learning to address the following subtopics. 1. Classification and identification of pathogenic microorganisms 2. Virulence prediction of pathogenic microorganisms 3. Antimicrobial resistance prediction of pathogenic microorganisms 4. Population structure and epidemiology of pathogenic microorganisms-related diseases 5. Immunological studies of pathogenic microorganisms 6. Drug target prediction for pathogenic microorganisms-related diseases
Machine learning and deep learning applications in pathogenic microbiome research
Author: Gang Ye
Publisher: Frontiers Media SA
ISBN: 283254956X
Category : Science
Languages : en
Pages : 162
Book Description
The pathogenic microbiome is the community of microorganisms that live in humans or animals and cause disease. These microorganisms include bacteria, viruses, fungi, protozoa, etc. They usually live in the host's skin, mouth, intestinal tract, genitourinary tract, etc. Normally, there is a state of equilibrium between the host and these microorganisms, but when this equilibrium is disturbed, these microorganisms become the pathogenic microbiome and cause disease. To advance the field of microbiome research, artificial intelligence methods, especially machine learning and deep learning, have recently been used as important tools due to their powerful predictive and informative potential. Classical machine learning algorithms such as linear regression, random forests, support vector machines, etc. perform well on microbiome data. However, as algorithms have been iteratively updated, these models have long been relegated to the basics. Linear regression models are now more often used to interpret these models more intuitively by using the output of other models as input. Deep learning is a branch of machine learning that involves a large number of neural network structures. Deep learning relies on neurons whose role is to transform the input and propagate it forward to the next neuron. Deep learning is currently being used with spectacular success in areas such as image recognition, text processing and automatic translation. As a result, a growing number of researchers are attempting to apply deep learning techniques to biomedical data analysis. Although there are still challenges in practical applications, such as model interpretability, data availability, model evaluation and selection, machine learning and deep learning are very promising tools in pathogenic microbiome research. This Research Topic, therefore, aims to contribute to the latest advances in machine learning, especially deep learning, and to explore new applications of related techniques in pathogenic microbiome research, trying to find relationships between microbiome and human health as well as the environment by studying high-throughput sequencing data of microbes, laying the foundation for further applications for subsequent treatment or forensic identification. We welcome submissions of Original Research, Brief Research Report, Review, Mini-Review, Methods, Perspective and Opinion articles that focus on, but are not limited to, the utilization of machine learning and deep learning to address the following subtopics. 1. Classification and identification of pathogenic microorganisms 2. Virulence prediction of pathogenic microorganisms 3. Antimicrobial resistance prediction of pathogenic microorganisms 4. Population structure and epidemiology of pathogenic microorganisms-related diseases 5. Immunological studies of pathogenic microorganisms 6. Drug target prediction for pathogenic microorganisms-related diseases
Publisher: Frontiers Media SA
ISBN: 283254956X
Category : Science
Languages : en
Pages : 162
Book Description
The pathogenic microbiome is the community of microorganisms that live in humans or animals and cause disease. These microorganisms include bacteria, viruses, fungi, protozoa, etc. They usually live in the host's skin, mouth, intestinal tract, genitourinary tract, etc. Normally, there is a state of equilibrium between the host and these microorganisms, but when this equilibrium is disturbed, these microorganisms become the pathogenic microbiome and cause disease. To advance the field of microbiome research, artificial intelligence methods, especially machine learning and deep learning, have recently been used as important tools due to their powerful predictive and informative potential. Classical machine learning algorithms such as linear regression, random forests, support vector machines, etc. perform well on microbiome data. However, as algorithms have been iteratively updated, these models have long been relegated to the basics. Linear regression models are now more often used to interpret these models more intuitively by using the output of other models as input. Deep learning is a branch of machine learning that involves a large number of neural network structures. Deep learning relies on neurons whose role is to transform the input and propagate it forward to the next neuron. Deep learning is currently being used with spectacular success in areas such as image recognition, text processing and automatic translation. As a result, a growing number of researchers are attempting to apply deep learning techniques to biomedical data analysis. Although there are still challenges in practical applications, such as model interpretability, data availability, model evaluation and selection, machine learning and deep learning are very promising tools in pathogenic microbiome research. This Research Topic, therefore, aims to contribute to the latest advances in machine learning, especially deep learning, and to explore new applications of related techniques in pathogenic microbiome research, trying to find relationships between microbiome and human health as well as the environment by studying high-throughput sequencing data of microbes, laying the foundation for further applications for subsequent treatment or forensic identification. We welcome submissions of Original Research, Brief Research Report, Review, Mini-Review, Methods, Perspective and Opinion articles that focus on, but are not limited to, the utilization of machine learning and deep learning to address the following subtopics. 1. Classification and identification of pathogenic microorganisms 2. Virulence prediction of pathogenic microorganisms 3. Antimicrobial resistance prediction of pathogenic microorganisms 4. Population structure and epidemiology of pathogenic microorganisms-related diseases 5. Immunological studies of pathogenic microorganisms 6. Drug target prediction for pathogenic microorganisms-related diseases
Applications of Machine Learning
Author: Prashant Johri
Publisher: Springer Nature
ISBN: 9811533571
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
Publisher: Springer Nature
ISBN: 9811533571
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
Microbiome and Microbial Informatics
Author: Zheng Zhang
Publisher: Frontiers Media SA
ISBN: 2832506828
Category : Science
Languages : en
Pages : 230
Book Description
Publisher: Frontiers Media SA
ISBN: 2832506828
Category : Science
Languages : en
Pages : 230
Book Description
Statistical Analysis of Microbiome Data
Author: Somnath Datta
Publisher: Springer Nature
ISBN: 3030733513
Category : Medical
Languages : en
Pages : 349
Book Description
Microbiome research has focused on microorganisms that live within the human body and their effects on health. During the last few years, the quantification of microbiome composition in different environments has been facilitated by the advent of high throughput sequencing technologies. The statistical challenges include computational difficulties due to the high volume of data; normalization and quantification of metabolic abundances, relative taxa and bacterial genes; high-dimensionality; multivariate analysis; the inherently compositional nature of the data; and the proper utilization of complementary phylogenetic information. This has resulted in an explosion of statistical approaches aimed at tackling the unique opportunities and challenges presented by microbiome data. This book provides a comprehensive overview of the state of the art in statistical and informatics technologies for microbiome research. In addition to reviewing demonstrably successful cutting-edge methods, particular emphasis is placed on examples in R that rely on available statistical packages for microbiome data. With its wide-ranging approach, the book benefits not only trained statisticians in academia and industry involved in microbiome research, but also other scientists working in microbiomics and in related fields.
Publisher: Springer Nature
ISBN: 3030733513
Category : Medical
Languages : en
Pages : 349
Book Description
Microbiome research has focused on microorganisms that live within the human body and their effects on health. During the last few years, the quantification of microbiome composition in different environments has been facilitated by the advent of high throughput sequencing technologies. The statistical challenges include computational difficulties due to the high volume of data; normalization and quantification of metabolic abundances, relative taxa and bacterial genes; high-dimensionality; multivariate analysis; the inherently compositional nature of the data; and the proper utilization of complementary phylogenetic information. This has resulted in an explosion of statistical approaches aimed at tackling the unique opportunities and challenges presented by microbiome data. This book provides a comprehensive overview of the state of the art in statistical and informatics technologies for microbiome research. In addition to reviewing demonstrably successful cutting-edge methods, particular emphasis is placed on examples in R that rely on available statistical packages for microbiome data. With its wide-ranging approach, the book benefits not only trained statisticians in academia and industry involved in microbiome research, but also other scientists working in microbiomics and in related fields.
Deep Learning in Biology and Medicine
Author: Davide Bacciu
Publisher: World Scientific Publishing Europe Limited
ISBN: 9781800610934
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
Biology, medicine and biochemistry have become data-centric fields for which Deep Learning methods are delivering groundbreaking results. Addressing high impact challenges, Deep Learning in Biology and Medicine provides an accessible and organic collection of Deep Learning essays on bioinformatics and medicine. It caters for a wide readership, ranging from machine learning practitioners and data scientists seeking methodological knowledge to address biomedical applications, to life science specialists in search of a gentle reference for advanced data analytics.With contributions from internationally renowned experts, the book covers foundational methodologies in a wide spectrum of life sciences applications, including electronic health record processing, diagnostic imaging, text processing, as well as omics-data processing. This survey of consolidated problems is complemented by a selection of advanced applications, including cheminformatics and biomedical interaction network analysis. A modern and mindful approach to the use of data-driven methodologies in the life sciences also requires careful consideration of the associated societal, ethical, legal and transparency challenges, which are covered in the concluding chapters of this book.
Publisher: World Scientific Publishing Europe Limited
ISBN: 9781800610934
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
Biology, medicine and biochemistry have become data-centric fields for which Deep Learning methods are delivering groundbreaking results. Addressing high impact challenges, Deep Learning in Biology and Medicine provides an accessible and organic collection of Deep Learning essays on bioinformatics and medicine. It caters for a wide readership, ranging from machine learning practitioners and data scientists seeking methodological knowledge to address biomedical applications, to life science specialists in search of a gentle reference for advanced data analytics.With contributions from internationally renowned experts, the book covers foundational methodologies in a wide spectrum of life sciences applications, including electronic health record processing, diagnostic imaging, text processing, as well as omics-data processing. This survey of consolidated problems is complemented by a selection of advanced applications, including cheminformatics and biomedical interaction network analysis. A modern and mindful approach to the use of data-driven methodologies in the life sciences also requires careful consideration of the associated societal, ethical, legal and transparency challenges, which are covered in the concluding chapters of this book.
Advances in Computing and Network Communications
Author: Sabu M. Thampi
Publisher: Springer Nature
ISBN: 9813369876
Category : Technology & Engineering
Languages : en
Pages : 604
Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Conference on Computing and Network Communications (CoCoNet'20), October 14–17, 2020, Chennai, India. The papers presented were carefully reviewed and selected from several initial submissions. The papers are organized in topical sections on Signal, Image and Speech Processing, Wireless and Mobile Communication, Internet of Things, Cloud and Edge Computing, Distributed Systems, Machine Intelligence, Data Analytics, Cybersecurity, Artificial Intelligence and Cognitive Computing and Circuits and Systems. The book is directed to the researchers and scientists engaged in various fields of computing and network communication domains.
Publisher: Springer Nature
ISBN: 9813369876
Category : Technology & Engineering
Languages : en
Pages : 604
Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Conference on Computing and Network Communications (CoCoNet'20), October 14–17, 2020, Chennai, India. The papers presented were carefully reviewed and selected from several initial submissions. The papers are organized in topical sections on Signal, Image and Speech Processing, Wireless and Mobile Communication, Internet of Things, Cloud and Edge Computing, Distributed Systems, Machine Intelligence, Data Analytics, Cybersecurity, Artificial Intelligence and Cognitive Computing and Circuits and Systems. The book is directed to the researchers and scientists engaged in various fields of computing and network communication domains.
Artificial Intelligence for Information Management: A Healthcare Perspective
Author: K. G. Srinivasa
Publisher: Springer Nature
ISBN: 9811604150
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book discusses the advancements in artificial intelligent techniques used in the well-being of human healthcare. It details the techniques used in collection, storage and analysis of data and their usage in different healthcare solutions. It also discusses the techniques of predictive analysis in early diagnosis of critical diseases. The edited book is divided into four parts – part A discusses introduction to artificial intelligence and machine learning in healthcare; part B highlights different analytical techniques used in healthcare; part C provides various security and privacy mechanisms used in healthcare; and finally, part D exemplifies different tools used in visualization and data analytics.
Publisher: Springer Nature
ISBN: 9811604150
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book discusses the advancements in artificial intelligent techniques used in the well-being of human healthcare. It details the techniques used in collection, storage and analysis of data and their usage in different healthcare solutions. It also discusses the techniques of predictive analysis in early diagnosis of critical diseases. The edited book is divided into four parts – part A discusses introduction to artificial intelligence and machine learning in healthcare; part B highlights different analytical techniques used in healthcare; part C provides various security and privacy mechanisms used in healthcare; and finally, part D exemplifies different tools used in visualization and data analytics.
Deep Learning Techniques for Biomedical and Health Informatics
Author: Basant Agarwal
Publisher: Academic Press
ISBN: 0128190620
Category : Science
Languages : en
Pages : 370
Book Description
Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing. - Examines a wide range of Deep Learning applications for Biomedical Engineering and Health Informatics, including Deep Learning for drug discovery, clinical decision support systems, disease diagnosis, prediction and monitoring - Discusses Deep Learning applied to Electronic Health Records (EHR), including health data structures and management, deep patient similarity learning, natural language processing, and how to improve clinical decision-making - Provides detailed coverage of Deep Learning for medical image processing, including optimizing medical big data, brain image analysis, brain tumor segmentation in MRI imaging, and the future of biomedical image analysis
Publisher: Academic Press
ISBN: 0128190620
Category : Science
Languages : en
Pages : 370
Book Description
Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing. - Examines a wide range of Deep Learning applications for Biomedical Engineering and Health Informatics, including Deep Learning for drug discovery, clinical decision support systems, disease diagnosis, prediction and monitoring - Discusses Deep Learning applied to Electronic Health Records (EHR), including health data structures and management, deep patient similarity learning, natural language processing, and how to improve clinical decision-making - Provides detailed coverage of Deep Learning for medical image processing, including optimizing medical big data, brain image analysis, brain tumor segmentation in MRI imaging, and the future of biomedical image analysis
Interpretable Machine Learning
Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320
Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320
Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Artificial Intelligence in Medicine
Author: Niklas Lidströmer
Publisher: Springer
ISBN: 9783030645724
Category : Medical
Languages : en
Pages : 1816
Book Description
This book provides a structured and analytical guide to the use of artificial intelligence in medicine. Covering all areas within medicine, the chapters give a systemic review of the history, scientific foundations, present advances, potential trends, and future challenges of artificial intelligence within a healthcare setting. Artificial Intelligence in Medicine aims to give readers the required knowledge to apply artificial intelligence to clinical practice. The book is relevant to medical students, specialist doctors, and researchers whose work will be affected by artificial intelligence.
Publisher: Springer
ISBN: 9783030645724
Category : Medical
Languages : en
Pages : 1816
Book Description
This book provides a structured and analytical guide to the use of artificial intelligence in medicine. Covering all areas within medicine, the chapters give a systemic review of the history, scientific foundations, present advances, potential trends, and future challenges of artificial intelligence within a healthcare setting. Artificial Intelligence in Medicine aims to give readers the required knowledge to apply artificial intelligence to clinical practice. The book is relevant to medical students, specialist doctors, and researchers whose work will be affected by artificial intelligence.