Low-Rank and Sparse Modeling for Visual Analysis

Low-Rank and Sparse Modeling for Visual Analysis PDF Author: Yun Fu
Publisher: Springer
ISBN: 331912000X
Category : Computers
Languages : en
Pages : 240

Get Book Here

Book Description
This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applications.

Low-Rank and Sparse Modeling for Visual Analysis

Low-Rank and Sparse Modeling for Visual Analysis PDF Author: Yun Fu
Publisher: Springer
ISBN: 331912000X
Category : Computers
Languages : en
Pages : 240

Get Book Here

Book Description
This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applications.

Deep Learning through Sparse and Low-Rank Modeling

Deep Learning through Sparse and Low-Rank Modeling PDF Author: Zhangyang Wang
Publisher: Academic Press
ISBN: 0128136596
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.

High-Dimensional Data Analysis with Low-Dimensional Models

High-Dimensional Data Analysis with Low-Dimensional Models PDF Author: John Wright
Publisher: Cambridge University Press
ISBN: 1108805558
Category : Computers
Languages : en
Pages : 718

Get Book Here

Book Description
Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.

Handbook of Robust Low-Rank and Sparse Matrix Decomposition

Handbook of Robust Low-Rank and Sparse Matrix Decomposition PDF Author: Thierry Bouwmans
Publisher: CRC Press
ISBN: 1498724639
Category : Computers
Languages : en
Pages : 553

Get Book Here

Book Description
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.

Generalized Low Rank Models

Generalized Low Rank Models PDF Author: Madeleine Udell
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. This dissertation extends the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.

Artificial Intelligence, Evolutionary Computing and Metaheuristics

Artificial Intelligence, Evolutionary Computing and Metaheuristics PDF Author: Xin-She Yang
Publisher: Springer
ISBN: 3642296947
Category : Technology & Engineering
Languages : en
Pages : 797

Get Book Here

Book Description
Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation. Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo search, and multiobjective optimization and many applications. These reviews and chapters not only provide a timely snapshot of the state-of-art developments, but also provide inspiration for young researchers to carry out potentially ground-breaking research in the active, diverse research areas in artificial intelligence, cryptography, machine learning, evolutionary computation, and nature-inspired metaheuristics. This edited book can serve as a timely reference for graduates, researchers and engineers in artificial intelligence, computer sciences, computational intelligence, soft computing, optimization, and applied sciences.

Low-Rank Models in Visual Analysis

Low-Rank Models in Visual Analysis PDF Author: Zhouchen Lin
Publisher: Academic Press
ISBN: 0128127325
Category : Computers
Languages : en
Pages : 262

Get Book Here

Book Description
Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alignment and rectification, motion segmentation, image segmentation and image saliency detection. Readers will learn which Low-rank models are highly useful in practice (both linear and nonlinear models), how to solve low-rank models efficiently, and how to apply low-rank models to real problems. - Presents a self-contained, up-to-date introduction that covers underlying theory, algorithms and the state-of-the-art in current applications - Provides a full and clear explanation of the theory behind the models - Includes detailed proofs in the appendices

Linear Algebra for Data Science, Machine Learning, and Signal Processing

Linear Algebra for Data Science, Machine Learning, and Signal Processing PDF Author: Jeffrey A. Fessler
Publisher: Cambridge University Press
ISBN: 1009418149
Category : Computers
Languages : en
Pages : 453

Get Book Here

Book Description
Master matrix methods via engaging data-driven applications, aided by classroom-tested quizzes, homework exercises and online Julia demos.

Background Modeling and Foreground Detection for Video Surveillance

Background Modeling and Foreground Detection for Video Surveillance PDF Author: Thierry Bouwmans
Publisher: CRC Press
ISBN: 1482205378
Category : Computers
Languages : en
Pages : 634

Get Book Here

Book Description
Background modeling and foreground detection are important steps in video processing used to detect robustly moving objects in challenging environments. This requires effective methods for dealing with dynamic backgrounds and illumination changes as well as algorithms that must meet real-time and low memory requirements. Incorporating both established and new ideas, Background Modeling and Foreground Detection for Video Surveillance provides a complete overview of the concepts, algorithms, and applications related to background modeling and foreground detection. Leaders in the field address a wide range of challenges, including camera jitter and background subtraction. The book presents the top methods and algorithms for detecting moving objects in video surveillance. It covers statistical models, clustering models, neural networks, and fuzzy models. It also addresses sensors, hardware, and implementation issues and discusses the resources and datasets required for evaluating and comparing background subtraction algorithms. The datasets and codes used in the text, along with links to software demonstrations, are available on the book’s website. A one-stop resource on up-to-date models, algorithms, implementations, and benchmarking techniques, this book helps researchers and industry developers understand how to apply background models and foreground detection methods to video surveillance and related areas, such as optical motion capture, multimedia applications, teleconferencing, video editing, and human–computer interfaces. It can also be used in graduate courses on computer vision, image processing, real-time architecture, machine learning, or data mining.

Tensor Computation for Data Analysis

Tensor Computation for Data Analysis PDF Author: Yipeng Liu
Publisher: Springer Nature
ISBN: 3030743861
Category : Technology & Engineering
Languages : en
Pages : 347

Get Book Here

Book Description
Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.