Predictability of Chaotic Dynamics

Predictability of Chaotic Dynamics PDF Author: Juan C. Vallejo
Publisher: Springer Nature
ISBN: 3030286304
Category : Science
Languages : en
Pages : 207

Get Book Here

Book Description
This book is primarily concerned with the computational aspects of predictability of dynamical systems - in particular those where observations, modeling and computation are strongly interdependent. Unlike with physical systems under control in laboratories, in astronomy it is uncommon to have the possibility of altering the key parameters of the studied objects. Therefore, the numerical simulations offer an essential tool for analysing these systems, and their reliability is of ever-increasing interest and importance. In this interdisciplinary scenario, the underlying physics provide the simulated models, nonlinear dynamics provides their chaoticity and instability properties, and the computer sciences provide the actual numerical implementation. This book introduces and explores precisely this link between the models and their predictability characterization based on concepts derived from the field of nonlinear dynamics, with a focus on the strong sensitivity to initial conditions and the use of Lyapunov exponents to characterize this sensitivity. This method is illustrated using several well-known continuous dynamical systems, such as the Contopoulos, Hénon-Heiles and Rössler systems. This second edition revises and significantly enlarges the material of the first edition by providing new entry points for discussing new predictability issues on a variety of areas such as machine decision-making, partial differential equations or the analysis of attractors and basins. Finally, the parts of the book devoted to the application of these ideas to astronomy have been greatly enlarged, by first presenting some basics aspects of predictability in astronomy and then by expanding these ideas to a detailed analysis of a galactic potential.

Predictability of Chaotic Dynamics

Predictability of Chaotic Dynamics PDF Author: Juan C. Vallejo
Publisher: Springer Nature
ISBN: 3030286304
Category : Science
Languages : en
Pages : 207

Get Book Here

Book Description
This book is primarily concerned with the computational aspects of predictability of dynamical systems - in particular those where observations, modeling and computation are strongly interdependent. Unlike with physical systems under control in laboratories, in astronomy it is uncommon to have the possibility of altering the key parameters of the studied objects. Therefore, the numerical simulations offer an essential tool for analysing these systems, and their reliability is of ever-increasing interest and importance. In this interdisciplinary scenario, the underlying physics provide the simulated models, nonlinear dynamics provides their chaoticity and instability properties, and the computer sciences provide the actual numerical implementation. This book introduces and explores precisely this link between the models and their predictability characterization based on concepts derived from the field of nonlinear dynamics, with a focus on the strong sensitivity to initial conditions and the use of Lyapunov exponents to characterize this sensitivity. This method is illustrated using several well-known continuous dynamical systems, such as the Contopoulos, Hénon-Heiles and Rössler systems. This second edition revises and significantly enlarges the material of the first edition by providing new entry points for discussing new predictability issues on a variety of areas such as machine decision-making, partial differential equations or the analysis of attractors and basins. Finally, the parts of the book devoted to the application of these ideas to astronomy have been greatly enlarged, by first presenting some basics aspects of predictability in astronomy and then by expanding these ideas to a detailed analysis of a galactic potential.

An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms PDF Author: Melanie Mitchell
Publisher: MIT Press
ISBN: 9780262631853
Category : Computers
Languages : en
Pages : 226

Get Book Here

Book Description
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.

An Introduction to Genetic Algorithms for Scientists and Engineers

An Introduction to Genetic Algorithms for Scientists and Engineers PDF Author: David A. Coley
Publisher: World Scientific
ISBN: 9789810236021
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
This invaluable book has been designed to be useful to most practising scientists and engineers, whatever their field and however rusty their mathematics and programming might be. The approach taken is largely practical, with algorithms being presented in full and working code (in BASIC, FORTRAN, PASCAL AND C) included on a floppy disk to help the reader get up and running as quickly as possible. The text could also be used as part of an undergraduate course on search and optimisation. Student exercises are included at the end of several of the chapters, many of which are computer-based and designed to encourage exploration of the method.

Deep Learning in Multi-step Prediction of Chaotic Dynamics

Deep Learning in Multi-step Prediction of Chaotic Dynamics PDF Author: Matteo Sangiorgio
Publisher: Springer Nature
ISBN: 3030944824
Category : Mathematics
Languages : en
Pages : 111

Get Book Here

Book Description
The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from deterministic models with different degrees of complexity and chaoticity to noisy systems and then to real-world cases, the book compares the performances of various neural network architectures (feed-forward and recurrent). It also introduces an innovative and powerful approach for training recurrent structures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation.

High-Dimensional Chaotic and Attractor Systems

High-Dimensional Chaotic and Attractor Systems PDF Author: Vladimir G. Ivancevic
Publisher: Springer Science & Business Media
ISBN: 1402054564
Category : Science
Languages : en
Pages : 711

Get Book Here

Book Description
This graduate–level textbook is devoted to understanding, prediction and control of high–dimensional chaotic and attractor systems of real life. The objective is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high–dimensional chaotic and attractor dynamics. From introductory material on low-dimensional attractors and chaos, the text explores concepts including Poincaré’s 3-body problem, high-tech Josephson junctions, and more.

Center for Complex Systems Research Technical Report

Center for Complex Systems Research Technical Report PDF Author:
Publisher:
ISBN:
Category : System analysis
Languages : en
Pages : 722

Get Book Here

Book Description


Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 780

Get Book Here

Book Description


Lectures in the Sciences of Complexity

Lectures in the Sciences of Complexity PDF Author:
Publisher:
ISBN:
Category : Chaotic behavior in systems
Languages : en
Pages : 712

Get Book Here

Book Description


Flight Mechanics/Estimation Theory Symposium 1992

Flight Mechanics/Estimation Theory Symposium 1992 PDF Author:
Publisher:
ISBN:
Category : Artificial satellites
Languages : en
Pages : 606

Get Book Here

Book Description


Assessment of Intraseasonal to Interannual Climate Prediction and Predictability

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030915183X
Category : Science
Languages : en
Pages : 192

Get Book Here

Book Description
More accurate forecasts of climate conditions over time periods of weeks to a few years could help people plan agricultural activities, mitigate drought, and manage energy resources, amongst other activities; however, current forecast systems have limited ability on these time- scales. Models for such climate forecasts must take into account complex interactions among the ocean, atmosphere, and land surface. Such processes can be difficult to represent realistically. To improve the quality of forecasts, this book makes recommendations about the development of the tools used in forecasting and about specific research goals for improving understanding of sources of predictability. To improve the accessibility of these forecasts to decision-makers and researchers, this book also suggests best practices to improve how forecasts are made and disseminated.