Author: Ahmed Mohamed Dabroom
Publisher:
ISBN:
Category : Discrete-time systems
Languages : en
Pages : 386
Book Description
Output Feedback Sampled-data Control of Nonlinear Systems Using High-gain Observers
Author: Ahmed Mohamed Dabroom
Publisher:
ISBN:
Category : Discrete-time systems
Languages : en
Pages : 386
Book Description
Publisher:
ISBN:
Category : Discrete-time systems
Languages : en
Pages : 386
Book Description
Proceedings of the ... American Control Conference
Author:
Publisher:
ISBN:
Category : Automatic control
Languages : en
Pages : 864
Book Description
Publisher:
ISBN:
Category : Automatic control
Languages : en
Pages : 864
Book Description
Logic-based Switching Control of Nonlinear Systems Using High-gain Observers
Author: Leonid B. Freidovich
Publisher:
ISBN:
Category : Feedback control systems
Languages : en
Pages : 274
Book Description
Publisher:
ISBN:
Category : Feedback control systems
Languages : en
Pages : 274
Book Description
Switching in Systems and Control
Author: Daniel Liberzon
Publisher: Springer Science & Business Media
ISBN: 1461200172
Category : Science
Languages : en
Pages : 232
Book Description
The theory of switched systems is related to the study of hybrid systems, which has gained attention from control theorists, computer scientists, and practicing engineers. This book examines switched systems from a control-theoretic perspective, focusing on stability analysis and control synthesis of systems that combine continuous dynamics with switching events. It includes a vast bibliography and a section of technical and historical notes.
Publisher: Springer Science & Business Media
ISBN: 1461200172
Category : Science
Languages : en
Pages : 232
Book Description
The theory of switched systems is related to the study of hybrid systems, which has gained attention from control theorists, computer scientists, and practicing engineers. This book examines switched systems from a control-theoretic perspective, focusing on stability analysis and control synthesis of systems that combine continuous dynamics with switching events. It includes a vast bibliography and a section of technical and historical notes.
Disturbance Observer-Based Control
Author: Shihua Li
Publisher: CRC Press
ISBN: 1466515805
Category : Computers
Languages : en
Pages : 342
Book Description
Due to its abilities to compensate disturbances and uncertainties, disturbance observer based control (DOBC) is regarded as one of the most promising approaches for disturbance-attenuation. One of the first books on DOBC, Disturbance Observer Based Control: Methods and Applications presents novel theory results as well as best practices for applica
Publisher: CRC Press
ISBN: 1466515805
Category : Computers
Languages : en
Pages : 342
Book Description
Due to its abilities to compensate disturbances and uncertainties, disturbance observer based control (DOBC) is regarded as one of the most promising approaches for disturbance-attenuation. One of the first books on DOBC, Disturbance Observer Based Control: Methods and Applications presents novel theory results as well as best practices for applica
Design of Nonlinear Control Systems with the Highest Derivative in Feedback
Author: Valery D. Yurkevich
Publisher: World Scientific
ISBN: 9812388990
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
This unique book presents an analytical uniform design methodology of continuous-time or discrete-time nonlinear control system design which guarantees desired transient performances in the presence of plant parameter variations and unknown external disturbances. All results are illustrated with numerical simulations, their practical importance is highlighted, and they may be used for real-time control system design in robotics, mechatronics, chemical reactors, electrical and electro-mechanical systems as well as aircraft control systems. The book is easy reading and is suitable for teaching.
Publisher: World Scientific
ISBN: 9812388990
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
This unique book presents an analytical uniform design methodology of continuous-time or discrete-time nonlinear control system design which guarantees desired transient performances in the presence of plant parameter variations and unknown external disturbances. All results are illustrated with numerical simulations, their practical importance is highlighted, and they may be used for real-time control system design in robotics, mechatronics, chemical reactors, electrical and electro-mechanical systems as well as aircraft control systems. The book is easy reading and is suitable for teaching.
Nonlinear Control of Dynamic Networks
Author: Tengfei Liu
Publisher: CRC Press
ISBN: 1466584599
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Significant progress has been made on nonlinear control systems in the past two decades. However, many of the existing nonlinear control methods cannot be readily used to cope with communication and networking issues without nontrivial modifications. For example, small quantization errors may cause the performance of a "well-designed" nonlinear control system to deteriorate. Motivated by the need for new tools to solve complex problems resulting from smart power grids, biological processes, distributed computing networks, transportation networks, robotic systems, and other cutting-edge control applications, Nonlinear Control of Dynamic Networks tackles newly arising theoretical and real-world challenges for stability analysis and control design, including nonlinearity, dimensionality, uncertainty, and information constraints as well as behaviors stemming from quantization, data-sampling, and impulses. Delivering a systematic review of the nonlinear small-gain theorems, the text: Supplies novel cyclic-small-gain theorems for large-scale nonlinear dynamic networks Offers a cyclic-small-gain framework for nonlinear control with static or dynamic quantization Contains a combination of cyclic-small-gain and set-valued map designs for robust control of nonlinear uncertain systems subject to sensor noise Presents a cyclic-small-gain result in directed graphs and distributed control of nonlinear multi-agent systems with fixed or dynamically changing topology Based on the authors’ recent research, Nonlinear Control of Dynamic Networks provides a unified framework for robust, quantized, and distributed control under information constraints. Suggesting avenues for further exploration, the book encourages readers to take into consideration more communication and networking issues in control designs to better handle the arising challenges.
Publisher: CRC Press
ISBN: 1466584599
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Significant progress has been made on nonlinear control systems in the past two decades. However, many of the existing nonlinear control methods cannot be readily used to cope with communication and networking issues without nontrivial modifications. For example, small quantization errors may cause the performance of a "well-designed" nonlinear control system to deteriorate. Motivated by the need for new tools to solve complex problems resulting from smart power grids, biological processes, distributed computing networks, transportation networks, robotic systems, and other cutting-edge control applications, Nonlinear Control of Dynamic Networks tackles newly arising theoretical and real-world challenges for stability analysis and control design, including nonlinearity, dimensionality, uncertainty, and information constraints as well as behaviors stemming from quantization, data-sampling, and impulses. Delivering a systematic review of the nonlinear small-gain theorems, the text: Supplies novel cyclic-small-gain theorems for large-scale nonlinear dynamic networks Offers a cyclic-small-gain framework for nonlinear control with static or dynamic quantization Contains a combination of cyclic-small-gain and set-valued map designs for robust control of nonlinear uncertain systems subject to sensor noise Presents a cyclic-small-gain result in directed graphs and distributed control of nonlinear multi-agent systems with fixed or dynamically changing topology Based on the authors’ recent research, Nonlinear Control of Dynamic Networks provides a unified framework for robust, quantized, and distributed control under information constraints. Suggesting avenues for further exploration, the book encourages readers to take into consideration more communication and networking issues in control designs to better handle the arising challenges.
Adaptive Switching Control of Large-Scale Complex Power Systems
Author: Yang Liu
Publisher: Springer Nature
ISBN: 9819910390
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
This book presents the latest research on switching control, adaptive switching control, and their applications in the transient stability control and analysis of large-scale complex power systems. In large-scale complex power systems, renewable power generators, flexible power electronics converters, and distributed controllers are widely employed. Due to the poor overcurrent tolerance capability of power electronics converters and lacking of coordination mechanism, stability control in events, such as natural disasters, cascaded faults, and severe disturbances, is viewed as the key challenge in the operation of these systems. High-performance self-coordinated controllers are needed for the control of important power sources and power electronics converters. Adaptive switching controllers are a group of controllers designed by the authors for the control of various renewable power generators, synchronous generators, and modular multilevel converters. These controllers operate in a self-coordinated manner and aim to employ the largest transient control energy of converters and power sources. Imbalance between power generation and consumption is largely filled by the application of these controllers, and transient stability of power systems can be significantly improved. This book covers both the preliminary knowledge and key proofs in the design and stability analysis of adaptive switching control systems, and considerable simulation and experimental results are presented to illustrate the application and performance of the controllers. This book is used as a reference book for researchers and engineers in fields of electrical engineering and control engineering.
Publisher: Springer Nature
ISBN: 9819910390
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
This book presents the latest research on switching control, adaptive switching control, and their applications in the transient stability control and analysis of large-scale complex power systems. In large-scale complex power systems, renewable power generators, flexible power electronics converters, and distributed controllers are widely employed. Due to the poor overcurrent tolerance capability of power electronics converters and lacking of coordination mechanism, stability control in events, such as natural disasters, cascaded faults, and severe disturbances, is viewed as the key challenge in the operation of these systems. High-performance self-coordinated controllers are needed for the control of important power sources and power electronics converters. Adaptive switching controllers are a group of controllers designed by the authors for the control of various renewable power generators, synchronous generators, and modular multilevel converters. These controllers operate in a self-coordinated manner and aim to employ the largest transient control energy of converters and power sources. Imbalance between power generation and consumption is largely filled by the application of these controllers, and transient stability of power systems can be significantly improved. This book covers both the preliminary knowledge and key proofs in the design and stability analysis of adaptive switching control systems, and considerable simulation and experimental results are presented to illustrate the application and performance of the controllers. This book is used as a reference book for researchers and engineers in fields of electrical engineering and control engineering.
Calculus of Variations and Optimal Control Theory
Author: Daniel Liberzon
Publisher: Princeton University Press
ISBN: 0691151873
Category : Mathematics
Languages : en
Pages : 255
Book Description
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Publisher: Princeton University Press
ISBN: 0691151873
Category : Mathematics
Languages : en
Pages : 255
Book Description
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
L1 Adaptive Control Theory
Author: Naira Hovakimyan
Publisher: SIAM
ISBN: 0898719372
Category : Science
Languages : en
Pages : 334
Book Description
This book presents a comprehensive overview of the recently developed L1 adaptive control theory, including detailed proofs of the main results. The key feature of the L1 adaptive control theory is the decoupling of adaptation from robustness. The architectures of L1 adaptive control theory have guaranteed transient performance and robustness in the presence of fast adaptation, without enforcing persistent excitation, applying gain-scheduling, or resorting to high-gain feedback.
Publisher: SIAM
ISBN: 0898719372
Category : Science
Languages : en
Pages : 334
Book Description
This book presents a comprehensive overview of the recently developed L1 adaptive control theory, including detailed proofs of the main results. The key feature of the L1 adaptive control theory is the decoupling of adaptation from robustness. The architectures of L1 adaptive control theory have guaranteed transient performance and robustness in the presence of fast adaptation, without enforcing persistent excitation, applying gain-scheduling, or resorting to high-gain feedback.