Logarithmic Combinatorial Structures

Logarithmic Combinatorial Structures PDF Author: Richard Arratia
Publisher: European Mathematical Society
ISBN: 9783037190005
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
This book explains similarities in asymptotic behavior as the result of two basic properties shared by the structures: the conditioning relation and the logarithmic condition. The discussion is conducted in the language of probability, enabling the theory to be developed under rather general and explicit conditions; for the finer conclusions, Stein's method emerges as the key ingredient.

Logarithmic Combinatorial Structures

Logarithmic Combinatorial Structures PDF Author: Richard Arratia
Publisher: European Mathematical Society
ISBN: 9783037190005
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
This book explains similarities in asymptotic behavior as the result of two basic properties shared by the structures: the conditioning relation and the logarithmic condition. The discussion is conducted in the language of probability, enabling the theory to be developed under rather general and explicit conditions; for the finer conclusions, Stein's method emerges as the key ingredient.

Logarithmic Combinatorial Structures: A Probabilistic Approach

Logarithmic Combinatorial Structures: A Probabilistic Approach PDF Author: R. Arratia (Barbour, A.D., Tavare, S.)
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Probability Approximations and Beyond

Probability Approximations and Beyond PDF Author: Andrew Barbour
Publisher: Springer Science & Business Media
ISBN: 1461419662
Category : Mathematics
Languages : en
Pages : 166

Get Book Here

Book Description
In June 2010, a conference, Probability Approximations and Beyond, was held at the National University of Singapore (NUS), in honor of pioneering mathematician Louis Chen. Chen made the first of several seminal contributions to the theory and application of Stein’s method. One of his most important contributions has been to turn Stein’s concentration inequality idea into an effective tool for providing error bounds for the normal approximation in many settings, and in particular for sums of random variables exhibiting only local dependence. This conference attracted a large audience that came to pay homage to Chen and to hear presentations by colleagues who have worked with him in special ways over the past 40+ years. The papers in this volume attest to how Louis Chen’s cutting-edge ideas influenced and continue to influence such areas as molecular biology and computer science. He has developed applications of his work on Poisson approximation to problems of signal detection in computational biology. The original papers contained in this book provide historical context for Chen’s work alongside commentary on some of his major contributions by noteworthy statisticians and mathematicians working today.

Probability and Mathematical Genetics

Probability and Mathematical Genetics PDF Author: N. H. Bingham
Publisher: Cambridge University Press
ISBN: 1139487922
Category : Mathematics
Languages : en
Pages : 547

Get Book Here

Book Description
No leading university department of mathematics or statistics, or library, can afford to be without this unique text. Leading authorities give a unique insight into a wide range of currently topical problems, from the mathematics of road networks to the genomics of cancer.

A Course in Error-correcting Codes

A Course in Error-correcting Codes PDF Author: Jørn Justesen
Publisher: European Mathematical Society
ISBN: 9783037190012
Category : Error-correcting codes (Information theory)
Languages : en
Pages : 210

Get Book Here

Book Description
This book is written as a text for a course aimed at advanced undergraduates. Chapters cover the codes and decoding methods that are currently of most interest in research, development, and application. They give a relatively brief presentation of the essential results, emphasizing the interrelations between different methods and proofs of all important results. A sequence of problems at the end of each chapter serves to review the results and give the student an appreciation of the concepts.

Statistics Based on Dirichlet Processes and Related Topics

Statistics Based on Dirichlet Processes and Related Topics PDF Author: Hajime Yamato
Publisher: Springer Nature
ISBN: 9811569754
Category : Mathematics
Languages : en
Pages : 80

Get Book Here

Book Description
This book focuses on the properties associated with the Dirichlet process, describing its use a priori for nonparametric inference and the Bayes estimate to obtain limits for the estimable parameter. It presents the limits and the well-known U- and V-statistics as a convex combination of U-statistics, and by investigating this convex combination, it demonstrates these three statistics. Next, the book notes that the Dirichlet process gives the discrete distribution with probability one, even if the parameter of the process is continuous. Therefore, there are duplications among the sample from the distribution, which are discussed. Because sampling from the Dirichlet process is described sequentially, it can be described equivalently by the Chinese restaurant process. Using this process, the Donnelly–Tavaré–Griffiths formulas I and II are obtained, both of which give the Ewens’ sampling formula. The book then shows the convergence and approximation of the distribution for its number of distinct components. Lastly, it explains the interesting properties of the Griffiths–Engen–McCloskey distribution, which is related to the Dirichlet process and the Ewens’ sampling formula.

An Introduction to Probabilistic Number Theory

An Introduction to Probabilistic Number Theory PDF Author: Emmanuel Kowalski
Publisher: Cambridge University Press
ISBN: 1108899560
Category : Mathematics
Languages : en
Pages : 271

Get Book Here

Book Description
Despite its seemingly deterministic nature, the study of whole numbers, especially prime numbers, has many interactions with probability theory, the theory of random processes and events. This surprising connection was first discovered around 1920, but in recent years the links have become much deeper and better understood. Aimed at beginning graduate students, this textbook is the first to explain some of the most modern parts of the story. Such topics include the Chebychev bias, universality of the Riemann zeta function, exponential sums and the bewitching shapes known as Kloosterman paths. Emphasis is given throughout to probabilistic ideas in the arguments, not just the final statements, and the focus is on key examples over technicalities. The book develops probabilistic number theory from scratch, with short appendices summarizing the most important background results from number theory, analysis and probability, making it a readable and incisive introduction to this beautiful area of mathematics.

Pioneering Works on Distribution Theory

Pioneering Works on Distribution Theory PDF Author: Nobuaki Hoshino
Publisher: Springer Nature
ISBN: 9811596638
Category : Mathematics
Languages : en
Pages : 125

Get Book Here

Book Description
This book highlights the forefront of research on statistical distribution theory, with a focus on unconventional random quantities, and on phenomena such as random partitioning. The respective papers reflect the continuing appeal of distribution theory and the lively interest in this classic field, which owes much of its expansion since the 1960s to Professor Masaaki Sibuya, to whom this book is dedicated. The topics addressed include a test procedure for discriminating the (multivariate) Ewens distribution from the Pitman Sampling Formula, approximation to the length of the Ewens distribution by discrete distributions and the normal distribution, and the distribution of the number of levels in [s]-specified random permutations. Also included are distributions associated with orthogonal polynomials with a symmetric matrix argument and the characterization of the Jeffreys prior.

Analytic Combinatorics

Analytic Combinatorics PDF Author: Philippe Flajolet
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825

Get Book Here

Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.

Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics

Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics PDF Author: Shuhei Mano
Publisher: Springer
ISBN: 4431558888
Category : Mathematics
Languages : en
Pages : 140

Get Book Here

Book Description
This book focuses on statistical inferences related to various combinatorial stochastic processes. Specifically, it discusses the intersection of three subjects that are generally studied independently of each other: partitions, hypergeometric systems, and Dirichlet processes. The Gibbs partition is a family of measures on integer partition, and several prior processes, such as the Dirichlet process, naturally appear in connection with infinite exchangeable Gibbs partitions. Examples include the distribution on a contingency table with fixed marginal sums and the conditional distribution of Gibbs partition given the length. The A-hypergeometric distribution is a class of discrete exponential families and appears as the conditional distribution of a multinomial sample from log-affine models. The normalizing constant is the A-hypergeometric polynomial, which is a solution of a system of linear differential equations of multiple variables determined by a matrix A, called A-hypergeometric system. The book presents inference methods based on the algebraic nature of the A-hypergeometric system, and introduces the holonomic gradient methods, which numerically solve holonomic systems without combinatorial enumeration, to compute the normalizing constant. Furher, it discusses Markov chain Monte Carlo and direct samplers from A-hypergeometric distribution, as well as the maximum likelihood estimation of the A-hypergeometric distribution of two-row matrix using properties of polytopes and information geometry. The topics discussed are simple problems, but the interdisciplinary approach of this book appeals to a wide audience with an interest in statistical inference on combinatorial stochastic processes, including statisticians who are developing statistical theories and methodologies, mathematicians wanting to discover applications of their theoretical results, and researchers working in various fields of data sciences.