Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives

Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives PDF Author: National Aeronautics and Space Adm Nasa
Publisher:
ISBN: 9781724110190
Category :
Languages : en
Pages : 26

Get Book Here

Book Description
In this paper we review the existing and develop new continuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L(exp 2) stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh. Yan, Jue and Shu, Chi-Wang and Bushnell, Dennis M. (Technical Monitor) Langley Research Center NASA/CR-2002-211959, NAS 1.26:211959, ICASE-2002-42...

Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives

Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives PDF Author: National Aeronautics and Space Adm Nasa
Publisher:
ISBN: 9781724110190
Category :
Languages : en
Pages : 26

Get Book Here

Book Description
In this paper we review the existing and develop new continuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L(exp 2) stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh. Yan, Jue and Shu, Chi-Wang and Bushnell, Dennis M. (Technical Monitor) Langley Research Center NASA/CR-2002-211959, NAS 1.26:211959, ICASE-2002-42...

Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives

Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives PDF Author: Jue Yan
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 24

Get Book Here

Book Description
In this paper we review the existing and develop new local discontinuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L2 stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh.

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods PDF Author: Bernardo Cockburn
Publisher: Springer Science & Business Media
ISBN: 3642597211
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations

Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations PDF Author: Xiaobing Feng
Publisher: Springer Science & Business Media
ISBN: 3319018183
Category : Mathematics
Languages : en
Pages : 289

Get Book Here

Book Description
The field of discontinuous Galerkin finite element methods has attracted considerable recent attention from scholars in the applied sciences and engineering. This volume brings together scholars working in this area, each representing a particular theme or direction of current research. Derived from the 2012 Barrett Lectures at the University of Tennessee, the papers reflect the state of the field today and point toward possibilities for future inquiry. The longer survey lectures, delivered by Franco Brezzi and Chi-Wang Shu, respectively, focus on theoretical aspects of discontinuous Galerkin methods for elliptic and evolution problems. Other papers apply DG methods to cases involving radiative transport equations, error estimates, and time-discrete higher order ALE functions, among other areas. Combining focused case studies with longer sections of expository discussion, this book will be an indispensable reference for researchers and students working with discontinuous Galerkin finite element methods and its applications.

Nonlinear Diffusion Problems

Nonlinear Diffusion Problems PDF Author: Odo Diekmann
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Nodal Discontinuous Galerkin Methods

Nodal Discontinuous Galerkin Methods PDF Author: Jan S. Hesthaven
Publisher: Springer Science & Business Media
ISBN: 0387720677
Category : Mathematics
Languages : en
Pages : 502

Get Book Here

Book Description
This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.

Local Discontinuous Galerkin Method for Khokhlov-Zabolotskaya-Kuznetzov Equation and Improved Boussinesq Equation

Local Discontinuous Galerkin Method for Khokhlov-Zabolotskaya-Kuznetzov Equation and Improved Boussinesq Equation PDF Author: Weizhou Sun
Publisher:
ISBN:
Category :
Languages : en
Pages : 85

Get Book Here

Book Description
In the first part, we briefly review the discontinuous Garlerkin (DG) method and the local discontinuous Garlerkin (LDG) method. We discuss the development of those methods and explain in detail how they can be used to solve various partial differential equations. We use numerical examples to demonstrate the application of the two methods. In the second part, we develop a LDG method for Khokhlov-Zabolotskaya-Kuznet- zov (KZK) equation. L2 stability is proved for the method and several acoustic examples are studied in comparison with results of previous researchers. We show that our method produces more accurate results in some limiting cases of KZK equaiton. In the last part, an energy conserving LDG method is developed for the improved Boussinesq equation. We show that high order accuracy method can be designed. We demonstrate that optimal order accuracy can be achieved for piecewise polynomial base space and present the process we discovered the method. We also apply our algorithm to solitary waves to understand the phenomenon of the propagation of such waves.

Runge-Kutta Discontinuous Galerkin Methods for Convection-dominated Problems

Runge-Kutta Discontinuous Galerkin Methods for Convection-dominated Problems PDF Author: Bernardo Cockburn
Publisher:
ISBN:
Category :
Languages : en
Pages : 84

Get Book Here

Book Description


Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 PDF Author: Jens M. Melenk
Publisher: Springer Nature
ISBN: 3031204328
Category : Mathematics
Languages : en
Pages : 571

Get Book Here

Book Description
The volume features high-quality papers based on the presentations at the ICOSAHOM 2020+1 on spectral and high order methods. The carefully reviewed articles cover state of the art topics in high order discretizations of partial differential equations. The volume presents a wide range of topics including the design and analysis of high order methods, the development of fast solvers on modern computer architecture, and the application of these methods in fluid and structural mechanics computations.

Two-Point Boundary Value Problems: Lower and Upper Solutions

Two-Point Boundary Value Problems: Lower and Upper Solutions PDF Author: C. De Coster
Publisher: Elsevier
ISBN: 0080462472
Category : Mathematics
Languages : en
Pages : 502

Get Book Here

Book Description
This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction. · Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes