Linear Ordinary Differential Equations

Linear Ordinary Differential Equations PDF Author: Earl A. Coddington
Publisher: SIAM
ISBN: 9781611971439
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description
Linear Ordinary Differential Equations, a text for advanced undergraduate or beginning graduate students, presents a thorough development of the main topics in linear differential equations. A rich collection of applications, examples, and exercises illustrates each topic. The authors reinforce students' understanding of calculus, linear algebra, and analysis while introducing the many applications of differential equations in science and engineering. Three recurrent themes run through the book. The methods of linear algebra are applied directly to the analysis of systems with constant or periodic coefficients and serve as a guide in the study of eigenvalues and eigenfunction expansions. The use of power series, beginning with the matrix exponential function leads to the special functions solving classical equations. Techniques from real analysis illuminate the development of series solutions, existence theorems for initial value problems, the asymptotic behavior solutions, and the convergence of eigenfunction expansions.

Linear Ordinary Differential Equations

Linear Ordinary Differential Equations PDF Author: Earl A. Coddington
Publisher: SIAM
ISBN: 9781611971439
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description
Linear Ordinary Differential Equations, a text for advanced undergraduate or beginning graduate students, presents a thorough development of the main topics in linear differential equations. A rich collection of applications, examples, and exercises illustrates each topic. The authors reinforce students' understanding of calculus, linear algebra, and analysis while introducing the many applications of differential equations in science and engineering. Three recurrent themes run through the book. The methods of linear algebra are applied directly to the analysis of systems with constant or periodic coefficients and serve as a guide in the study of eigenvalues and eigenfunction expansions. The use of power series, beginning with the matrix exponential function leads to the special functions solving classical equations. Techniques from real analysis illuminate the development of series solutions, existence theorems for initial value problems, the asymptotic behavior solutions, and the convergence of eigenfunction expansions.

Ordinary Differential Equations and Linear Algebra

Ordinary Differential Equations and Linear Algebra PDF Author: Todd Kapitula
Publisher: SIAM
ISBN: 1611974097
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
Ordinary differential equations (ODEs) and linear algebra are foundational postcalculus mathematics courses in the sciences. The goal of this text is to help students master both subject areas in a one-semester course. Linear algebra is developed first, with an eye toward solving linear systems of ODEs. A computer algebra system is used for intermediate calculations (Gaussian elimination, complicated integrals, etc.); however, the text is not tailored toward a particular system. Ordinary Differential Equations and Linear Algebra: A Systems Approach systematically develops the linear algebra needed to solve systems of ODEs and includes over 15 distinct applications of the theory, many of which are not typically seen in a textbook at this level (e.g., lead poisoning, SIR models, digital filters). It emphasizes mathematical modeling and contains group projects at the end of each chapter that allow students to more fully explore the interaction between the modeling of a system, the solution of the model, and the resulting physical description.

General Linear Methods for Ordinary Differential Equations

General Linear Methods for Ordinary Differential Equations PDF Author: Zdzislaw Jackiewicz
Publisher: John Wiley & Sons
ISBN: 0470522151
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
Learn to develop numerical methods for ordinary differential equations General Linear Methods for Ordinary Differential Equations fills a gap in the existing literature by presenting a comprehensive and up-to-date collection of recent advances and developments in the field. This book provides modern coverage of the theory, construction, and implementation of both classical and modern general linear methods for solving ordinary differential equations as they apply to a variety of related areas, including mathematics, applied science, and engineering. The author provides the theoretical foundation for understanding basic concepts and presents a short introduction to ordinary differential equations that encompasses the related concepts of existence and uniqueness theory, stability theory, and stiff differential equations and systems. In addition, a thorough presentation of general linear methods explores relevant subtopics such as pre-consistency, consistency, stage-consistency, zero stability, convergence, order- and stage-order conditions, local discretization error, and linear stability theory. Subsequent chapters feature coverage of: Differential equations and systems Introduction to general linear methods (GLMs) Diagonally implicit multistage integration methods (DIMSIMs) Implementation of DIMSIMs Two-step Runge-Kutta (TSRK) methods Implementation of TSRK methods GLMs with inherent Runge-Kutta stability (IRKS) Implementation of GLMs with IRKS General Linear Methods for Ordinary Differential Equations is an excellent book for courses on numerical ordinary differential equations at the upper-undergraduate and graduate levels. It is also a useful reference for academic and research professionals in the fields of computational and applied mathematics, computational physics, civil and chemical engineering, chemistry, and the life sciences.

Linear Differential Equations in the Complex Domain

Linear Differential Equations in the Complex Domain PDF Author: Yoshishige Haraoka
Publisher: Springer Nature
ISBN: 3030546632
Category : Mathematics
Languages : en
Pages : 398

Get Book Here

Book Description
This book provides a detailed introduction to recent developments in the theory of linear differential systems and integrable total differential systems. Starting from the basic theory of linear ordinary differential equations and integrable systems, it proceeds to describe Katz theory and its applications, extending it to the case of several variables. In addition, connection problems, deformation theory, and the theory of integral representations are comprehensively covered. Complete proofs are given, offering the reader a precise account of the classical and modern theory of linear differential equations in the complex domain, including an exposition of Pfaffian systems and their monodromy problems. The prerequisites are a course in complex analysis and the basics of differential equations, topology and differential geometry. This book will be useful for graduate students, specialists in differential equations, and for non-specialists who want to use differential equations.

Global Properties of Linear Ordinary Differential Equations

Global Properties of Linear Ordinary Differential Equations PDF Author: Frantisek Neuman
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
This volume presents an authoritative, unified overview of the methods and results concerning the global properties of linear differential equations of order n (n>=2). It does not, however, seek to be comprehensive. Rather, it contains a selection of results which richly illustrate the unified approach presented. By making use of recent methods and results from many different areas of mathematics and by introducing several original methods, global solutions of problems previously studied only locally are given. The structure of global transformations is described algebraically, and a new geometrical approach is introduced which leads to global canonical forms suitable for Cartan's moving frame-of-reference method. The theory discussed also provides effective tools for solving some open problems, especially relating to the distribution of zeros of solutions. In addition, the theory of functional equations plays an important role in studying the asymptotic behaviour of solutions. Applications to differential geometry and functional equations are also described. The volume is largely self-contained. This book is for mathematicians, computer scientists, physicists, chemists, engineers, and others whose work involves the use of linear differential equations.

Differential Equations

Differential Equations PDF Author: Shepley L. Ross
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 736

Get Book Here

Book Description
Fundamental methods and applications; Fundamental theory and further methods;

Notes on Diffy Qs

Notes on Diffy Qs PDF Author: Jiri Lebl
Publisher:
ISBN: 9781706230236
Category :
Languages : en
Pages : 468

Get Book Here

Book Description
Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.

Asymptotic Analysis

Asymptotic Analysis PDF Author: Mikhail V. Fedoryuk
Publisher: Springer Science & Business Media
ISBN: 3642580165
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
In this book we present the main results on the asymptotic theory of ordinary linear differential equations and systems where there is a small parameter in the higher derivatives. We are concerned with the behaviour of solutions with respect to the parameter and for large values of the independent variable. The literature on this question is considerable and widely dispersed, but the methods of proofs are sufficiently similar for this material to be put together as a reference book. We have restricted ourselves to homogeneous equations. The asymptotic behaviour of an inhomogeneous equation can be obtained from the asymptotic behaviour of the corresponding fundamental system of solutions by applying methods for deriving asymptotic bounds on the relevant integrals. We systematically use the concept of an asymptotic expansion, details of which can if necessary be found in [Wasow 2, Olver 6]. By the "formal asymptotic solution" (F.A.S.) is understood a function which satisfies the equation to some degree of accuracy. Although this concept is not precisely defined, its meaning is always clear from the context. We also note that the term "Stokes line" used in the book is equivalent to the term "anti-Stokes line" employed in the physics literature.

Introduction to Ordinary Differential Equations

Introduction to Ordinary Differential Equations PDF Author: Albert L. Rabenstein
Publisher: Academic Press
ISBN: 1483226220
Category : Mathematics
Languages : en
Pages : 444

Get Book Here

Book Description
Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutions, and that should be of interest to the mathematics major, such as the theorems about the existence and uniqueness of solutions. The final chapters discuss the stability of critical points of plane autonomous systems and the results about the existence of periodic solutions of nonlinear equations. This book is great use to mathematicians, physicists, and undergraduate students of engineering and the science who are interested in applications of differential equation.

Differential Equations

Differential Equations PDF Author: A. C. King
Publisher: Cambridge University Press
ISBN: 9780521816588
Category : Mathematics
Languages : en
Pages : 554

Get Book Here

Book Description
Differential equations are vital to science, engineering and mathematics, and this book enables the reader to develop the required skills needed to understand them thoroughly. The authors focus on constructing solutions analytically and interpreting their meaning and use MATLAB extensively to illustrate the material along with many examples based on interesting and unusual real world problems. A large selection of exercises is also provided.