Linac Coherent Light Source (LCLS) at 2--4 Nm Using the SLAC Linac

Linac Coherent Light Source (LCLS) at 2--4 Nm Using the SLAC Linac PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The authors describe the possible use of the SLAC linac to drive a unique, powerful, short wavelength Linac Coherent Light Source (LCLS). Using the FEL principle, lasing is achieved in a single pass of a high peak current electron beam through a long undulator by self-amplified-spontaneous-emission (SASE). The main components are a high-brightness electron RF gun with a photocathode, two electron bunch length compressors, the existing SLAC linac, beam diagnostics, and a long undulator combined with a FODO quadrupole focusing system. The RF gun, to be installed about 1 km from the end of the SLAC linac, would produce a single bunch of 6 x 10[sup 9] electrons with an invariant emittance of about 3 mm-mrad and a bunch length of about 500 [mu]m. That bunch is then accelerated to 100 MeV and compressed to a length of about 200 [mu]m. The main SLAC linac accelerates the bunch to 2 GeV were a second bunch compressor reduces the length to 30--40 [mu]m and produces a peak current of 2--3 kA. The bunch is then accelerated to 7--8 GeV and transported to a 50--70 m long undulator. Using electrons below 8 GeV, the undulator could operate at wavelengths down to 2 nm, producing about 10 GW peak power in sub-ps light pulses. At a linac repetition rate of 120 Hz, the average power is about 1 W. Linac operation at lower beam energies provides longer wavelength radiation. After the undulator, the beam is deposited in a dump. The LCLS light pulses are then distributed to multiple user stations using grazing incident mirrors. Length compression, emittance control, phase stability, FEL design criteria, and parameter tolerances are discussed. A demonstration experiment is also described which uses the SLAC linac and (possibly) the PALADIN undulator to study SASE to power saturation at wavelengths of 40--360 nm.

Linac Coherent Light Source (LCLS) at 2--4 Nm Using the SLAC Linac

Linac Coherent Light Source (LCLS) at 2--4 Nm Using the SLAC Linac PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The authors describe the possible use of the SLAC linac to drive a unique, powerful, short wavelength Linac Coherent Light Source (LCLS). Using the FEL principle, lasing is achieved in a single pass of a high peak current electron beam through a long undulator by self-amplified-spontaneous-emission (SASE). The main components are a high-brightness electron RF gun with a photocathode, two electron bunch length compressors, the existing SLAC linac, beam diagnostics, and a long undulator combined with a FODO quadrupole focusing system. The RF gun, to be installed about 1 km from the end of the SLAC linac, would produce a single bunch of 6 x 10[sup 9] electrons with an invariant emittance of about 3 mm-mrad and a bunch length of about 500 [mu]m. That bunch is then accelerated to 100 MeV and compressed to a length of about 200 [mu]m. The main SLAC linac accelerates the bunch to 2 GeV were a second bunch compressor reduces the length to 30--40 [mu]m and produces a peak current of 2--3 kA. The bunch is then accelerated to 7--8 GeV and transported to a 50--70 m long undulator. Using electrons below 8 GeV, the undulator could operate at wavelengths down to 2 nm, producing about 10 GW peak power in sub-ps light pulses. At a linac repetition rate of 120 Hz, the average power is about 1 W. Linac operation at lower beam energies provides longer wavelength radiation. After the undulator, the beam is deposited in a dump. The LCLS light pulses are then distributed to multiple user stations using grazing incident mirrors. Length compression, emittance control, phase stability, FEL design criteria, and parameter tolerances are discussed. A demonstration experiment is also described which uses the SLAC linac and (possibly) the PALADIN undulator to study SASE to power saturation at wavelengths of 40--360 nm.

Linac Coherent Light Source (LCLS) Design Study Report

Linac Coherent Light Source (LCLS) Design Study Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 300

Get Book Here

Book Description
The Stanford Linear Accelerator Center (SLAC), in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the self-amplified spontaneous emission (SASE) mode in the wavelength range 1.5--15 Å. This FEL, called Linac Coherent Light Source (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. In this report, the Design Team has established performance parameters for all the major components of the LCLS and developed a layout of the entire system. Chapter 1 is the Executive Summary. Chapter 2 (Overview) provides a brief description of each of the major sections of the LCLS, from the rf photocathode gun, through the experimental stations and electron beam dump. Chapter 3 describes the scientific case for the LCLS. Chapter 4 provides a review of the principles of the FEL physics that the LCLS is based on, and Chapter 5 discusses the choice of the system's physical parameters. Chapters 6 through 10 describe in detail each major element of the system. Chapters 11 through 13 respectively cover undulator controls, mechanical alignment, and radiation issues.

Linac Coherent Light Source II (LCLS-II) Conceptual Design Report

Linac Coherent Light Source II (LCLS-II) Conceptual Design Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that LCLS-II only constitutes a stepping stone to what we believe is needed over a longer time scale. At present, a practical time horizon for planning is about 15 years into the future, matching that of worldwide planning activities for competitive X-FEL facilities in Europe and Asia. We therefore envision LCLS-II as an important stage in development to what is required by about 2025, tentatively called LCLS-2025, for continued US leadership even as new facilities around the world are being completed. We envision LCLS primarily as a hard x-ray FEL facility with some soft x-ray capabilities. A survey of planned X-FEL facilities around the world suggests that US planning to 2025 needs to include an internationally competitive soft x-ray FEL facility which complements the LCLS plans outlined in this document.

Research and Development Toward a 4.5-1.5 Å Linac Coherent Light Source (LCLS) at SLAC.

Research and Development Toward a 4.5-1.5 Å Linac Coherent Light Source (LCLS) at SLAC. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 29

Get Book Here

Book Description
In recent years significant studies have been initiated on the feasibility of utilizing a portion of the 3km S-band accelerator at SLAC to drive a short wavelength (4.5-1.5 A) Linac Coherent Light Source (LCLS), a Free Electron Laser (FEL) operating in the Self- Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation in a minimal time include: (1) a peak current in the 7 kA range, (2) a relative energy spread of>0.05%, and (3) a transverse emittance, [epsilon][r-m], approximating the diffraction limit condition [epsilon] = [lambda] / 4[pi], where lambda(m) is the output wavelength. Requirements on the insertion device include field error levels of 0.02% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 8 m/rad for inhibiting the dilution of its transverse density. Although much progress has been made in developing individual components and beam processing techniques necessary for LCLS operation down to approx. 20 A, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 A LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas.

Ultrashort Optical Pulses in the Linac Coherent Light Source

Ultrashort Optical Pulses in the Linac Coherent Light Source PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Linac Coherent Light Source (LCLS) project at the Stanford Linear Accelerator Center (SLAC) will produce intense, coherent 0.15 nm x-rays, with an expected peak brightness many orders of magnitude greater than existing x-ray sources and energy density as high as 4 x 1025 watts/cm2. These x-rays are produced by a single pass of a 15 GeV electron beam through a long undulator. The 15 GeV electron beam is generated using the last one third of the existing SLAC linac. This paper describes how to extend the present design of the LCLS to generate even shorter x-ray pulses than the nominal 255 femtoseconds FWHM. The goal of this study is to obtain pulse lengths as short as 50 femtoseconds. The scientific need for the shorter bunches is outlined, and electron and x-ray pulse compression options are reviewed. The analysis concludes that there are paths, albeit difficult, to obtaining shorter bunches and that the present LCLS design has the flexibility and range to test these paths.

Linac Design for the LCLS Project at SLAC.

Linac Design for the LCLS Project at SLAC. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Linac Coherent Light Source (LCLS) at SLAC is being designed to produce intense, coherent 0.15-nm x-rays. These x-rays will be produced by a single pass of a 15 GeV bunched electron beam through a long undulator. Nominally, the bunches have a charge of 1 nC, normalized transverse emittances of less than 1.5[pi] mm-mr and an rms bunch length of 20[mu]m. The electron beam will be produced using the last third of the SLAC 3-km linac in a manner compatible with simultaneous operation of the remainder of the linac for PEP-II. The linac design necessary to produce an electron beam with the required brightness for LCLS is discussed, and the specific linac modifications are described.

Research and Development Toward a 4.5-1.5[Angstrom] Linac Coherent Light Source (LCLS) at SLAC.

Research and Development Toward a 4.5-1.5[Angstrom] Linac Coherent Light Source (LCLS) at SLAC. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In recent years significant studies have been initiated on the feasibility of utilizing a portion of the 3km S-band accelerator at SLAC to drive a short wavelength (4.5-1.5 A) Linac Coherent Light Source (LCLS), a Free Electron Laser (FEL) operating in the Self- Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation in a minimal time include: (1) a peak current in the 7 kA range, (2) a relative energy spread of[lt]0.05%, and (3) a transverse emittance, [epsilon][r-m], approximating the diffraction limit condition[epsilon]=[lambda] / 4[pi], where lambda(m) is the output wavelength. Requirements on the insertion device include field error levels of 0.02% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 8 m/rad for inhibiting the dilution of its transverse density. Although much progress has been made in developing individual components and beam processing techniques necessary for LCLS operation down to approx. 20 A, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 A LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas.

The Linac Coherent Light Source at SLAC. Radiological Considerations and Shielding Calculations

The Linac Coherent Light Source at SLAC. Radiological Considerations and Shielding Calculations PDF Author: A. Fasso
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
The Linac Coherent Light Source (LCLS) at SLAC will be the world's first X-ray free electron laser when it becomes operational in 2009. Pulses of X-ray laser light from LCLS will be many orders of magnitude brighter and several orders of magnitude shorter than what can be produced by other X-ray sources available in the world. These characteristics will enable frontier new science in many areas. This paper describes the LCLS beam parameters and its lay-out. Results of the Monte Carlo calculations for the shielding design of the electron dump line, radiation damage to undulator, the residual radiation and the soil activation around the electron dump are presented.

The Linac Coherent Light Source Project at SLAC.

The Linac Coherent Light Source Project at SLAC. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser project presently under construction at SLAC. A 14-GeV high-brightness electron beam is produced in the last kilometer of the existing SLAC linear accelerator, generating coherent x-ray radiation in a 130-m long undulator. The peak x-ray brightness is 10 orders of magnitude higher than existing 3rd generation light sources with a wavelength of 1.5 Angstroms and a pulse duration as short as one femtosecond, opening limitless scientific opportunities in the world of the ultra-small and ultra-fast. This presentation will describe the project scope and status, highlighting especially the key accelerator physics challenges.

Linac Coherent Light Source (LCLS) Conceptual Design Report

Linac Coherent Light Source (LCLS) Conceptual Design Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R & D facility operating in the wavelength range 1.5-15 Å. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.