Author: Jack S. Griffith
Publisher:
ISBN:
Category : Lie groups
Languages : en
Pages : 128
Book Description
Lie Transforms and Perturbation Methods
Author: Jack S. Griffith
Publisher:
ISBN:
Category : Lie groups
Languages : en
Pages : 128
Book Description
Publisher:
ISBN:
Category : Lie groups
Languages : en
Pages : 128
Book Description
Perturbation Methods, Bifurcation Theory and Computer Algebra
Author: Richard H. Rand
Publisher: Springer Science & Business Media
ISBN: 1461210607
Category : Mathematics
Languages : en
Pages : 254
Book Description
Perturbation methods have always been an important tool for treating nonlinear differential equations. Now the drudgery associated with them has been eliminated! This book offers computer algebra (MACSYMA) programs which implement the most popular perturbation methods. Not only does this avoid the errors associated with hand computation, but the increase in efficiency permits more complicated problems to be tackled. This book is useful both for the beginner learning perturbation methods for the first time, as well as for the researcher. Methods covered include: Lindstedt's method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction. For each method the book includes an introduction and some example problems solved both by hand and by machine. The examples feature common bifurcations such as the pitchfork and the Hopf. The MACSYMA code for each method is given and suggested exercises are provided at the end of each Chapter. An Appendix offers a brief introduction to MACSYMA.
Publisher: Springer Science & Business Media
ISBN: 1461210607
Category : Mathematics
Languages : en
Pages : 254
Book Description
Perturbation methods have always been an important tool for treating nonlinear differential equations. Now the drudgery associated with them has been eliminated! This book offers computer algebra (MACSYMA) programs which implement the most popular perturbation methods. Not only does this avoid the errors associated with hand computation, but the increase in efficiency permits more complicated problems to be tackled. This book is useful both for the beginner learning perturbation methods for the first time, as well as for the researcher. Methods covered include: Lindstedt's method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction. For each method the book includes an introduction and some example problems solved both by hand and by machine. The examples feature common bifurcations such as the pitchfork and the Hopf. The MACSYMA code for each method is given and suggested exercises are provided at the end of each Chapter. An Appendix offers a brief introduction to MACSYMA.
Hamiltonian Perturbation Solutions for Spacecraft Orbit Prediction
Author: Martín Lara
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110667320
Category : Science
Languages : en
Pages : 315
Book Description
"Analytical solutions to the orbital motion of celestial objects have been nowadays mostly replaced by numerical solutions, but they are still irreplaceable whenever speed is to be preferred to accuracy, or to simplify a dynamical model. In this book, the most common orbital perturbations problems are discussed according to the Lie transforms method, which is the de facto standard in analytical orbital motion calculations"--Print version, page 4 of cover.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110667320
Category : Science
Languages : en
Pages : 315
Book Description
"Analytical solutions to the orbital motion of celestial objects have been nowadays mostly replaced by numerical solutions, but they are still irreplaceable whenever speed is to be preferred to accuracy, or to simplify a dynamical model. In this book, the most common orbital perturbations problems are discussed according to the Lie transforms method, which is the de facto standard in analytical orbital motion calculations"--Print version, page 4 of cover.
Nonlinear Dynamics
Author: Ardshir Guran
Publisher: World Scientific
ISBN: 9789810229825
Category : Science
Languages : en
Pages : 254
Book Description
This book is a collection of papers on the subject of nonlinear dynamics and its applications written by experts in this field. It offers the reader a sampling of exciting research areas in this fast-growing field. The topics covered include chaos, tools to analyze motions, fractal boundaries, dynamics of the Fitzhugh-Nagumo equation, structural control, separation of contaminations from signal of interest, parametric excitation, stochastic bifurcation, mode localization in repetitive structures, Toda lattice, transition from soliton to chaotic motion, nonlinear normal modes, noise perturbations of nonlinear dynamical systems, and phase locking of coupled limit cycle oscillators. Mathematical methods include Lie transforms, Monte Carlo simulations, stochastic calculus, perturbation methods and proper orthogonal decomposition. Applications include gyrodynamics, tether connected satellites, shell buckling, nonlinear circuits, volume oscillations of a large lake, systems with stick-slip friction, imperfect or disordered structures, overturning of rigid blocks, central pattern generators, flow induced oscillations, shape control and vibration suppression of elastic structures.All of these diverse contributions have a common thread: the world of nonlinear behavior. Although linear dynamics is an invaluable tool, there are many problems where nonlinear effects are essential. Some examples include bifurcation of solutions, stability of motion, the effects of large displacements, and subharmonic resonance. This book shows how nonlinear dynamics is currently being utilized and investigated. It will be of interest to engineers, applied mathematicians and physicists.
Publisher: World Scientific
ISBN: 9789810229825
Category : Science
Languages : en
Pages : 254
Book Description
This book is a collection of papers on the subject of nonlinear dynamics and its applications written by experts in this field. It offers the reader a sampling of exciting research areas in this fast-growing field. The topics covered include chaos, tools to analyze motions, fractal boundaries, dynamics of the Fitzhugh-Nagumo equation, structural control, separation of contaminations from signal of interest, parametric excitation, stochastic bifurcation, mode localization in repetitive structures, Toda lattice, transition from soliton to chaotic motion, nonlinear normal modes, noise perturbations of nonlinear dynamical systems, and phase locking of coupled limit cycle oscillators. Mathematical methods include Lie transforms, Monte Carlo simulations, stochastic calculus, perturbation methods and proper orthogonal decomposition. Applications include gyrodynamics, tether connected satellites, shell buckling, nonlinear circuits, volume oscillations of a large lake, systems with stick-slip friction, imperfect or disordered structures, overturning of rigid blocks, central pattern generators, flow induced oscillations, shape control and vibration suppression of elastic structures.All of these diverse contributions have a common thread: the world of nonlinear behavior. Although linear dynamics is an invaluable tool, there are many problems where nonlinear effects are essential. Some examples include bifurcation of solutions, stability of motion, the effects of large displacements, and subharmonic resonance. This book shows how nonlinear dynamics is currently being utilized and investigated. It will be of interest to engineers, applied mathematicians and physicists.
Perturbation Methods in Non-Linear Systems
Author: Georgio Eugenio Oscare Giacaglia
Publisher: Springer Science & Business Media
ISBN: 1461264006
Category : Mathematics
Languages : en
Pages : 379
Book Description
This volume is intended to provide a comprehensive treatment of recent developments in methods of perturbation for nonlinear systems of ordinary differ ential equations. In this respect, it appears to be a unique work. The main goal is to describe perturbation techniques, discuss their ad vantages and limitations and give some examples. The approach is founded on analytical and numerical methods of nonlinear mechanics. Attention has been given to the extension of methods to high orders of approximation, required now by the increased accuracy of measurements in all fields of science and technology. The main theorems relevant to each perturbation technique are outlined, but they only provide a foundation and are not the objective of these notes. Each chapter concludes with a detailed survey of the pertinent literature, supplemental information and more examples to complement the text, when necessary, for better comprehension. The references are intended to provide a guide for background information and for the reader who wishes to analyze any particular point in more detail. The main sources referenced are in the fields of differential equations, nonlinear oscillations and celestial mechanics. Thanks are due to Katherine MacDougall and Sandra Spinacci for their patience and competence in typing these notes. Partial support from the Mathematics Program of the Office of Naval Research is gratefully acknowledged.
Publisher: Springer Science & Business Media
ISBN: 1461264006
Category : Mathematics
Languages : en
Pages : 379
Book Description
This volume is intended to provide a comprehensive treatment of recent developments in methods of perturbation for nonlinear systems of ordinary differ ential equations. In this respect, it appears to be a unique work. The main goal is to describe perturbation techniques, discuss their ad vantages and limitations and give some examples. The approach is founded on analytical and numerical methods of nonlinear mechanics. Attention has been given to the extension of methods to high orders of approximation, required now by the increased accuracy of measurements in all fields of science and technology. The main theorems relevant to each perturbation technique are outlined, but they only provide a foundation and are not the objective of these notes. Each chapter concludes with a detailed survey of the pertinent literature, supplemental information and more examples to complement the text, when necessary, for better comprehension. The references are intended to provide a guide for background information and for the reader who wishes to analyze any particular point in more detail. The main sources referenced are in the fields of differential equations, nonlinear oscillations and celestial mechanics. Thanks are due to Katherine MacDougall and Sandra Spinacci for their patience and competence in typing these notes. Partial support from the Mathematics Program of the Office of Naval Research is gratefully acknowledged.
Perturbation Methods
Author: Ali H. Nayfeh
Publisher: John Wiley & Sons
ISBN: 3527617612
Category : Science
Languages : en
Pages : 437
Book Description
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research
Publisher: John Wiley & Sons
ISBN: 3527617612
Category : Science
Languages : en
Pages : 437
Book Description
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research
A Pedestrian's Guide to Lie Transforms
Author: Robert Grayson Littlejohn
Publisher:
ISBN:
Category : Hamiltonian systems
Languages : en
Pages : 254
Book Description
Publisher:
ISBN:
Category : Hamiltonian systems
Languages : en
Pages : 254
Book Description
Theory of Orbits
Author: Dino Boccaletti
Publisher: Springer Science & Business Media
ISBN: 3662092409
Category : Science
Languages : en
Pages : 430
Book Description
Half a century ago, S. Chandrasekhar wrote these words in the preface to his 1 celebrated and successful book: In this monograph an attempt has been made to present the theory of stellar dy namics as a branch of classical dynamics - a discipline in the same general category as celestial mechanics. [ ... ] Indeed, several of the problems of modern stellar dy namical theory are so severely classical that it is difficult to believe that they are not already discussed, for example, in Jacobi's Vorlesungen. Since then, stellar dynamics has developed in several directions and at var ious levels, basically three viewpoints remaining from which to look at the problems encountered in the interpretation of the phenomenology. Roughly speaking, we can say that a stellar system (cluster, galaxy, etc.) can be con sidered from the point of view of celestial mechanics (the N-body problem with N» 1), fluid mechanics (the system is represented by a material con tinuum), or statistical mechanics (one defines a distribution function for the positions and the states of motion of the components of the system).
Publisher: Springer Science & Business Media
ISBN: 3662092409
Category : Science
Languages : en
Pages : 430
Book Description
Half a century ago, S. Chandrasekhar wrote these words in the preface to his 1 celebrated and successful book: In this monograph an attempt has been made to present the theory of stellar dy namics as a branch of classical dynamics - a discipline in the same general category as celestial mechanics. [ ... ] Indeed, several of the problems of modern stellar dy namical theory are so severely classical that it is difficult to believe that they are not already discussed, for example, in Jacobi's Vorlesungen. Since then, stellar dynamics has developed in several directions and at var ious levels, basically three viewpoints remaining from which to look at the problems encountered in the interpretation of the phenomenology. Roughly speaking, we can say that a stellar system (cluster, galaxy, etc.) can be con sidered from the point of view of celestial mechanics (the N-body problem with N» 1), fluid mechanics (the system is represented by a material con tinuum), or statistical mechanics (one defines a distribution function for the positions and the states of motion of the components of the system).
Perturbation Methods for Differential Equations
Author: Bhimsen Shivamoggi
Publisher: Springer Science & Business Media
ISBN: 1461200474
Category : Mathematics
Languages : en
Pages : 363
Book Description
Perturbation methods are widely used in the study of physically significant differential equations, which arise in Applied Mathematics, Physics and Engineering.; Background material is provided in each chapter along with illustrative examples, problems, and solutions.; A comprehensive bibliography and index complete the work.; Covers an important field of solutions for engineering and the physical sciences.; To allow an interdisciplinary readership, the book focuses almost exclusively on the procedures and the underlying ideas and soft pedal the proofs; Dr. Bhimsen K. Shivamoggi has authored seven successful books for various publishers like John Wiley & Sons and Kluwer Academic Publishers.
Publisher: Springer Science & Business Media
ISBN: 1461200474
Category : Mathematics
Languages : en
Pages : 363
Book Description
Perturbation methods are widely used in the study of physically significant differential equations, which arise in Applied Mathematics, Physics and Engineering.; Background material is provided in each chapter along with illustrative examples, problems, and solutions.; A comprehensive bibliography and index complete the work.; Covers an important field of solutions for engineering and the physical sciences.; To allow an interdisciplinary readership, the book focuses almost exclusively on the procedures and the underlying ideas and soft pedal the proofs; Dr. Bhimsen K. Shivamoggi has authored seven successful books for various publishers like John Wiley & Sons and Kluwer Academic Publishers.
Lie Transforms and Their Use in Hamiltonian Perturbation Theory
Author: John R. Cary
Publisher:
ISBN:
Category : Hamiltonian systems
Languages : en
Pages : 72
Book Description
Publisher:
ISBN:
Category : Hamiltonian systems
Languages : en
Pages : 72
Book Description