Author: James Pierpont
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 584
Book Description
Lectures on the Theory of Functions of Real Variables
Author: James Pierpont
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 584
Book Description
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 584
Book Description
Several Real Variables
Author: Shmuel Kantorovitz
Publisher: Springer
ISBN: 3319279564
Category : Mathematics
Languages : en
Pages : 317
Book Description
This undergraduate textbook is based on lectures given by the author on the differential and integral calculus of functions of several real variables. The book has a modern approach and includes topics such as: •The p-norms on vector space and their equivalence •The Weierstrass and Stone-Weierstrass approximation theorems •The differential as a linear functional; Jacobians, Hessians, and Taylor's theorem in several variables •The Implicit Function Theorem for a system of equations, proved via Banach’s Fixed Point Theorem •Applications to Ordinary Differential Equations •Line integrals and an introduction to surface integrals This book features numerous examples, detailed proofs, as well as exercises at the end of sections. Many of the exercises have detailed solutions, making the book suitable for self-study. Several Real Variables will be useful for undergraduate students in mathematics who have completed first courses in linear algebra and analysis of one real variable.
Publisher: Springer
ISBN: 3319279564
Category : Mathematics
Languages : en
Pages : 317
Book Description
This undergraduate textbook is based on lectures given by the author on the differential and integral calculus of functions of several real variables. The book has a modern approach and includes topics such as: •The p-norms on vector space and their equivalence •The Weierstrass and Stone-Weierstrass approximation theorems •The differential as a linear functional; Jacobians, Hessians, and Taylor's theorem in several variables •The Implicit Function Theorem for a system of equations, proved via Banach’s Fixed Point Theorem •Applications to Ordinary Differential Equations •Line integrals and an introduction to surface integrals This book features numerous examples, detailed proofs, as well as exercises at the end of sections. Many of the exercises have detailed solutions, making the book suitable for self-study. Several Real Variables will be useful for undergraduate students in mathematics who have completed first courses in linear algebra and analysis of one real variable.
Theory of Functions of a Real Variable
Author: I. P. Natanson
Publisher:
ISBN:
Category : Functions of real variables
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Functions of real variables
Languages : en
Pages : 0
Book Description
The Theory of Functions of Real Variables
Author: Lawrence M Graves
Publisher: Courier Corporation
ISBN: 0486158136
Category : Mathematics
Languages : en
Pages : 361
Book Description
This balanced introduction covers all fundamentals, from the real number system and point sets to set theory and metric spaces. Useful references to the literature conclude each chapter. 1956 edition.
Publisher: Courier Corporation
ISBN: 0486158136
Category : Mathematics
Languages : en
Pages : 361
Book Description
This balanced introduction covers all fundamentals, from the real number system and point sets to set theory and metric spaces. Useful references to the literature conclude each chapter. 1956 edition.
Lectures on the Theory of Functions of a Complex Variable: Holomorphic functions
Author: Giovanni Sansone
Publisher:
ISBN:
Category : Functions of complex variables
Languages : en
Pages : 506
Book Description
Publisher:
ISBN:
Category : Functions of complex variables
Languages : en
Pages : 506
Book Description
Philosophical Magazine
Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1004
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1004
Book Description
Nature
Author: Sir Norman Lockyer
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 910
Book Description
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 910
Book Description
Classical and Modern Integration Theories
Author: Ivan N. Pesin
Publisher: Academic Press
ISBN: 1483268691
Category : Mathematics
Languages : en
Pages : 218
Book Description
Classical and Modern Integration Theories discusses classical integration theory, particularly that part of the theory directly associated with the problems of area. The book reviews the history and the determination of primitive functions, beginning from Cauchy to Daniell. The text describes Cauchy's definition of an integral, Riemann's definition of the R-integral, the upper and lower Darboux integrals. The book also reviews the origin of the Lebesgue-Young integration theory, and Borel's postulates that define measures of sets. W.H. Young's work provides a construction of the integral equivalent to Lebesque's construction with a different generalization of integrals leading to different approaches in solutions. Young's investigations aim at generalizing the notion of length for arbitrary sets by means of a process which is more general than Borel's postulates. The text notes that the Lebesgue measure is the unique solution of the measure problem for the class of L-measurable sets. The book also describes further modifications made into the Lebesgue definition of the integral by Riesz, Pierpont, Denjoy, Borel, and Young. These modifications bring the Lebesgue definition of the integral closer to the Riemann or Darboux definitions, as well as to have it associated with the concepts of classical analysis. The book can benefit mathematicians, students, and professors in calculus or readers interested in the history of classical mathematics.
Publisher: Academic Press
ISBN: 1483268691
Category : Mathematics
Languages : en
Pages : 218
Book Description
Classical and Modern Integration Theories discusses classical integration theory, particularly that part of the theory directly associated with the problems of area. The book reviews the history and the determination of primitive functions, beginning from Cauchy to Daniell. The text describes Cauchy's definition of an integral, Riemann's definition of the R-integral, the upper and lower Darboux integrals. The book also reviews the origin of the Lebesgue-Young integration theory, and Borel's postulates that define measures of sets. W.H. Young's work provides a construction of the integral equivalent to Lebesque's construction with a different generalization of integrals leading to different approaches in solutions. Young's investigations aim at generalizing the notion of length for arbitrary sets by means of a process which is more general than Borel's postulates. The text notes that the Lebesgue measure is the unique solution of the measure problem for the class of L-measurable sets. The book also describes further modifications made into the Lebesgue definition of the integral by Riesz, Pierpont, Denjoy, Borel, and Young. These modifications bring the Lebesgue definition of the integral closer to the Riemann or Darboux definitions, as well as to have it associated with the concepts of classical analysis. The book can benefit mathematicians, students, and professors in calculus or readers interested in the history of classical mathematics.
The Mathematical Gazette
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 474
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 474
Book Description
Function Theory of One Complex Variable
Author: Robert Everist Greene
Publisher: American Mathematical Soc.
ISBN: 9780821839621
Category : Mathematics
Languages : en
Pages : 536
Book Description
Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.
Publisher: American Mathematical Soc.
ISBN: 9780821839621
Category : Mathematics
Languages : en
Pages : 536
Book Description
Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.