Author: Bojko Bakalov
Publisher: American Mathematical Soc.
ISBN: 0821826867
Category : Mathematics
Languages : en
Pages : 232
Book Description
This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail: the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations. Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some proofs. The book makes an important addition to the existing literature on the topic. It would be suitable as a course text at the advanced-graduate level.
Lectures on Tensor Categories and Modular Functors
Author: Bojko Bakalov
Publisher: American Mathematical Soc.
ISBN: 0821826867
Category : Mathematics
Languages : en
Pages : 232
Book Description
This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail: the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations. Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some proofs. The book makes an important addition to the existing literature on the topic. It would be suitable as a course text at the advanced-graduate level.
Publisher: American Mathematical Soc.
ISBN: 0821826867
Category : Mathematics
Languages : en
Pages : 232
Book Description
This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail: the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations. Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some proofs. The book makes an important addition to the existing literature on the topic. It would be suitable as a course text at the advanced-graduate level.
Tensor Categories
Author: Pavel Etingof
Publisher: American Mathematical Soc.
ISBN: 1470434415
Category : Mathematics
Languages : en
Pages : 362
Book Description
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Publisher: American Mathematical Soc.
ISBN: 1470434415
Category : Mathematics
Languages : en
Pages : 362
Book Description
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Categories for Quantum Theory
Author: Chris Heunen
Publisher: Oxford University Press
ISBN: 0191060062
Category : Mathematics
Languages : en
Pages : 320
Book Description
Monoidal category theory serves as a powerful framework for describing logical aspects of quantum theory, giving an abstract language for parallel and sequential composition, and a conceptual way to understand many high-level quantum phenomena. This text lays the foundation for this categorical quantum mechanics, with an emphasis on the graphical calculus which makes computation intuitive. Biproducts and dual objects are introduced and used to model superposition and entanglement, with quantum teleportation studied abstractly using these structures. Monoids, Frobenius structures and Hopf algebras are described, and it is shown how they can be used to model classical information and complementary observables. The CP construction, a categorical tool to describe probabilistic quantum systems, is also investigated. The last chapter introduces higher categories, surface diagrams and 2-Hilbert spaces, and shows how the language of duality in monoidal 2-categories can be used to reason about quantum protocols, including quantum teleportation and dense coding. Prior knowledge of linear algebra, quantum information or category theory would give an ideal background for studying this text, but it is not assumed, with essential background material given in a self-contained introductory chapter. Throughout the text links with many other areas are highlighted, such as representation theory, topology, quantum algebra, knot theory, and probability theory, and nonstandard models are presented, such as sets and relations. All results are stated rigorously, and full proofs are given as far as possible, making this book an invaluable reference for modern techniques in quantum logic, with much of the material not available in any other textbook.
Publisher: Oxford University Press
ISBN: 0191060062
Category : Mathematics
Languages : en
Pages : 320
Book Description
Monoidal category theory serves as a powerful framework for describing logical aspects of quantum theory, giving an abstract language for parallel and sequential composition, and a conceptual way to understand many high-level quantum phenomena. This text lays the foundation for this categorical quantum mechanics, with an emphasis on the graphical calculus which makes computation intuitive. Biproducts and dual objects are introduced and used to model superposition and entanglement, with quantum teleportation studied abstractly using these structures. Monoids, Frobenius structures and Hopf algebras are described, and it is shown how they can be used to model classical information and complementary observables. The CP construction, a categorical tool to describe probabilistic quantum systems, is also investigated. The last chapter introduces higher categories, surface diagrams and 2-Hilbert spaces, and shows how the language of duality in monoidal 2-categories can be used to reason about quantum protocols, including quantum teleportation and dense coding. Prior knowledge of linear algebra, quantum information or category theory would give an ideal background for studying this text, but it is not assumed, with essential background material given in a self-contained introductory chapter. Throughout the text links with many other areas are highlighted, such as representation theory, topology, quantum algebra, knot theory, and probability theory, and nonstandard models are presented, such as sets and relations. All results are stated rigorously, and full proofs are given as far as possible, making this book an invaluable reference for modern techniques in quantum logic, with much of the material not available in any other textbook.
Categories in Algebra, Geometry and Mathematical Physics
Author: Alexei Davydov
Publisher: American Mathematical Soc.
ISBN: 0821839705
Category : Mathematics
Languages : en
Pages : 482
Book Description
Category theory has become the universal language of modern mathematics. This book is a collection of articles applying methods of category theory to the areas of algebra, geometry, and mathematical physics. Among others, this book contains articles on higher categories and their applications and on homotopy theoretic methods. The reader can learn about the exciting new interactions of category theory with very traditional mathematical disciplines.
Publisher: American Mathematical Soc.
ISBN: 0821839705
Category : Mathematics
Languages : en
Pages : 482
Book Description
Category theory has become the universal language of modern mathematics. This book is a collection of articles applying methods of category theory to the areas of algebra, geometry, and mathematical physics. Among others, this book contains articles on higher categories and their applications and on homotopy theoretic methods. The reader can learn about the exciting new interactions of category theory with very traditional mathematical disciplines.
Vertex Operator Algebras in Mathematics and Physics
Author: Stephen Berman
Publisher: American Mathematical Soc.
ISBN: 9780821871447
Category : Mathematics
Languages : en
Pages : 268
Book Description
Vertex operator algebras are a class of algebras underlying a number of recent constructions, results, and themes in mathematics. These algebras can be understood as ''string-theoretic analogues'' of Lie algebras and of commutative associative algebras. They play fundamental roles in some of the most active research areas in mathematics and physics. Much recent progress in both physics and mathematics has benefited from cross-pollination between the physical and mathematical points of view. This book presents the proceedings from the workshop, ''Vertex Operator Algebras in Mathematics and Physics'', held at The Fields Institute. It consists of papers based on many of the talks given at the conference by leading experts in the algebraic, geometric, and physical aspects of vertex operator algebra theory. The book is suitable for graduate students and research mathematicians interested in the major themes and important developments on the frontier of research in vertex operator algebra theory and its applications in mathematics and physics.
Publisher: American Mathematical Soc.
ISBN: 9780821871447
Category : Mathematics
Languages : en
Pages : 268
Book Description
Vertex operator algebras are a class of algebras underlying a number of recent constructions, results, and themes in mathematics. These algebras can be understood as ''string-theoretic analogues'' of Lie algebras and of commutative associative algebras. They play fundamental roles in some of the most active research areas in mathematics and physics. Much recent progress in both physics and mathematics has benefited from cross-pollination between the physical and mathematical points of view. This book presents the proceedings from the workshop, ''Vertex Operator Algebras in Mathematics and Physics'', held at The Fields Institute. It consists of papers based on many of the talks given at the conference by leading experts in the algebraic, geometric, and physical aspects of vertex operator algebra theory. The book is suitable for graduate students and research mathematicians interested in the major themes and important developments on the frontier of research in vertex operator algebra theory and its applications in mathematics and physics.
Topology and Geometry of Manifolds
Author: Gordana Matic
Publisher: American Mathematical Soc.
ISBN: 0821835076
Category : Mathematics
Languages : en
Pages : 370
Book Description
Since 1961, the Georgia Topology Conference has been held every eight years to discuss the newest developments in topology. The goals of the conference are to disseminate new and important results and to encourage interaction among topologists who are in different stages of their careers. Invited speakers are encouraged to aim their talks to a broad audience, and several talks are organized to introduce graduate students to topics of current interest. Each conference results in high-quality surveys, new research, and lists of unsolved problems, some of which are then formally published. Continuing in this 40-year tradition, the AMS presents this volume of articles and problem lists from the 2001 conference. Topics covered include symplectic and contact topology, foliations and laminations, and invariants of manifolds and knots. Articles of particular interest include John Etnyre's, ``Introductory Lectures on Contact Geometry'', which is a beautiful expository paper that explains the background and setting for many of the other papers. This is an excellent introduction to the subject for graduate students in neighboring fields. Etnyre and Lenhard Ng's, ``Problems in Low-Dimensional Contact Topology'' and Danny Calegari's extensive paper,``Problems in Foliations and Laminations of 3-Manifolds'' are carefully selected problems in keeping with the tradition of the conference. They were compiled by Etnyre and Ng and by Calegari with the input of many who were present. This book provides material of current interest to graduate students and research mathematicians interested in the geometry and topology of manifolds.
Publisher: American Mathematical Soc.
ISBN: 0821835076
Category : Mathematics
Languages : en
Pages : 370
Book Description
Since 1961, the Georgia Topology Conference has been held every eight years to discuss the newest developments in topology. The goals of the conference are to disseminate new and important results and to encourage interaction among topologists who are in different stages of their careers. Invited speakers are encouraged to aim their talks to a broad audience, and several talks are organized to introduce graduate students to topics of current interest. Each conference results in high-quality surveys, new research, and lists of unsolved problems, some of which are then formally published. Continuing in this 40-year tradition, the AMS presents this volume of articles and problem lists from the 2001 conference. Topics covered include symplectic and contact topology, foliations and laminations, and invariants of manifolds and knots. Articles of particular interest include John Etnyre's, ``Introductory Lectures on Contact Geometry'', which is a beautiful expository paper that explains the background and setting for many of the other papers. This is an excellent introduction to the subject for graduate students in neighboring fields. Etnyre and Lenhard Ng's, ``Problems in Low-Dimensional Contact Topology'' and Danny Calegari's extensive paper,``Problems in Foliations and Laminations of 3-Manifolds'' are carefully selected problems in keeping with the tradition of the conference. They were compiled by Etnyre and Ng and by Calegari with the input of many who were present. This book provides material of current interest to graduate students and research mathematicians interested in the geometry and topology of manifolds.
Three Lectures on Commutative Algebra
Author: Holger Brenner
Publisher: American Mathematical Soc.
ISBN: 0821844342
Category : Mathematics
Languages : en
Pages : 202
Book Description
These lectures provides detailed introductions to some of the latest advances in three significant areas of rapid development in commutative algebra and its applications: tight closure and vector bundles; combinatorics and commutative algebra; constructive desingularization."
Publisher: American Mathematical Soc.
ISBN: 0821844342
Category : Mathematics
Languages : en
Pages : 202
Book Description
These lectures provides detailed introductions to some of the latest advances in three significant areas of rapid development in commutative algebra and its applications: tight closure and vector bundles; combinatorics and commutative algebra; constructive desingularization."
Lectures on Harmonic Analysis
Author: Thomas H. Wolff
Publisher: American Mathematical Soc.
ISBN: 0821834495
Category : Mathematics
Languages : en
Pages : 154
Book Description
This book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis. It is both an introduction to the subject as a whole and an overview of those branches of harmonic analysis that are relevant to the Kakeya conjecture. The usual background material is covered in the first few chapters: the Fourier transform, convolution, the inversion theorem, the uncertainty principle and the method of stationary phase. However, the choice of topics is highly selective, with emphasis on those frequently used in research inspired by the problems discussed in the later chapters. These include questions related to the restriction conjecture and the Kakeya conjecture, distance sets, and Fourier transforms of singular measures. These problems are diverse, but often interconnected; they all combine sophisticated Fourier analysis with intriguing links to other areas of mathematics and they continue to stimulate first-rate work. The book focuses on laying out a solid foundation for further reading and research. Technicalities are kept to a minimum, and simpler but more basic methods are often favored over the most recent methods. The clear style of the exposition and the quick progression from fundamentals to advanced topics ensures that both graduate students and research mathematicians will benefit from the book.
Publisher: American Mathematical Soc.
ISBN: 0821834495
Category : Mathematics
Languages : en
Pages : 154
Book Description
This book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis. It is both an introduction to the subject as a whole and an overview of those branches of harmonic analysis that are relevant to the Kakeya conjecture. The usual background material is covered in the first few chapters: the Fourier transform, convolution, the inversion theorem, the uncertainty principle and the method of stationary phase. However, the choice of topics is highly selective, with emphasis on those frequently used in research inspired by the problems discussed in the later chapters. These include questions related to the restriction conjecture and the Kakeya conjecture, distance sets, and Fourier transforms of singular measures. These problems are diverse, but often interconnected; they all combine sophisticated Fourier analysis with intriguing links to other areas of mathematics and they continue to stimulate first-rate work. The book focuses on laying out a solid foundation for further reading and research. Technicalities are kept to a minimum, and simpler but more basic methods are often favored over the most recent methods. The clear style of the exposition and the quick progression from fundamentals to advanced topics ensures that both graduate students and research mathematicians will benefit from the book.
Topological Phases of Matter and Quantum Computation
Author: Paul Bruillard
Publisher: American Mathematical Soc.
ISBN: 1470440741
Category : Education
Languages : en
Pages : 242
Book Description
This volume contains the proceedings of the AMS Special Session on Topological Phases of Matter and Quantum Computation, held from September 24–25, 2016, at Bowdoin College, Brunswick, Maine. Topological quantum computing has exploded in popularity in recent years. Sitting at the triple point between mathematics, physics, and computer science, it has the potential to revolutionize sub-disciplines in these fields. The academic importance of this field has been recognized in physics through the 2016 Nobel Prize. In mathematics, some of the 1990 Fields Medals were awarded for developments in topics that nowadays are fundamental tools for the study of topological quantum computation. Moreover, the practical importance of this discipline has been underscored by recent industry investments. The relative youth of this field combined with a high degree of interest in it makes now an excellent time to get involved. Furthermore, the cross-disciplinary nature of topological quantum computing provides an unprecedented number of opportunities for cross-pollination of mathematics, physics, and computer science. This can be seen in the variety of works contained in this volume. With articles coming from mathematics, physics, and computer science, this volume aims to provide a taste of different sub-disciplines for novices and a wealth of new perspectives for veteran researchers. Regardless of your point of entry into topological quantum computing or your experience level, this volume has something for you.
Publisher: American Mathematical Soc.
ISBN: 1470440741
Category : Education
Languages : en
Pages : 242
Book Description
This volume contains the proceedings of the AMS Special Session on Topological Phases of Matter and Quantum Computation, held from September 24–25, 2016, at Bowdoin College, Brunswick, Maine. Topological quantum computing has exploded in popularity in recent years. Sitting at the triple point between mathematics, physics, and computer science, it has the potential to revolutionize sub-disciplines in these fields. The academic importance of this field has been recognized in physics through the 2016 Nobel Prize. In mathematics, some of the 1990 Fields Medals were awarded for developments in topics that nowadays are fundamental tools for the study of topological quantum computation. Moreover, the practical importance of this discipline has been underscored by recent industry investments. The relative youth of this field combined with a high degree of interest in it makes now an excellent time to get involved. Furthermore, the cross-disciplinary nature of topological quantum computing provides an unprecedented number of opportunities for cross-pollination of mathematics, physics, and computer science. This can be seen in the variety of works contained in this volume. With articles coming from mathematics, physics, and computer science, this volume aims to provide a taste of different sub-disciplines for novices and a wealth of new perspectives for veteran researchers. Regardless of your point of entry into topological quantum computing or your experience level, this volume has something for you.
Deep Beauty
Author: Hans Halvorson
Publisher: Cambridge University Press
ISBN: 113949922X
Category : Mathematics
Languages : en
Pages : 487
Book Description
No scientific theory has caused more puzzlement and confusion than quantum theory. Physics is supposed to help us to understand the world, but quantum theory makes it seem a very strange place. This book is about how mathematical innovation can help us gain deeper insight into the structure of the physical world. Chapters by top researchers in the mathematical foundations of physics explore new ideas, especially novel mathematical concepts at the cutting edge of future physics. These creative developments in mathematics may catalyze the advances that enable us to understand our current physical theories, especially quantum theory. The authors bring diverse perspectives, unified only by the attempt to introduce fresh concepts that will open up new vistas in our understanding of future physics.
Publisher: Cambridge University Press
ISBN: 113949922X
Category : Mathematics
Languages : en
Pages : 487
Book Description
No scientific theory has caused more puzzlement and confusion than quantum theory. Physics is supposed to help us to understand the world, but quantum theory makes it seem a very strange place. This book is about how mathematical innovation can help us gain deeper insight into the structure of the physical world. Chapters by top researchers in the mathematical foundations of physics explore new ideas, especially novel mathematical concepts at the cutting edge of future physics. These creative developments in mathematics may catalyze the advances that enable us to understand our current physical theories, especially quantum theory. The authors bring diverse perspectives, unified only by the attempt to introduce fresh concepts that will open up new vistas in our understanding of future physics.