Time-dependent Partial Differential Equations and Their Numerical Solution

Time-dependent Partial Differential Equations and Their Numerical Solution PDF Author: Heinz-Otto Kreiss
Publisher: Springer Science & Business Media
ISBN: 9783764361259
Category : Mathematics
Languages : en
Pages : 100

Get Book Here

Book Description
This book studies time-dependent partial differential equations and their numerical solution, developing the analytic and the numerical theory in parallel, and placing special emphasis on the discretization of boundary conditions. The theoretical results are then applied to Newtonian and non-Newtonian flows, two-phase flows and geophysical problems. This book will be a useful introduction to the field for applied mathematicians and graduate students.

Time-dependent Partial Differential Equations and Their Numerical Solution

Time-dependent Partial Differential Equations and Their Numerical Solution PDF Author: Heinz-Otto Kreiss
Publisher: Springer Science & Business Media
ISBN: 9783764361259
Category : Mathematics
Languages : en
Pages : 100

Get Book Here

Book Description
This book studies time-dependent partial differential equations and their numerical solution, developing the analytic and the numerical theory in parallel, and placing special emphasis on the discretization of boundary conditions. The theoretical results are then applied to Newtonian and non-Newtonian flows, two-phase flows and geophysical problems. This book will be a useful introduction to the field for applied mathematicians and graduate students.

Mathematics and Computation in Imaging Science and Information Processing

Mathematics and Computation in Imaging Science and Information Processing PDF Author: Say Song Goh
Publisher: World Scientific
ISBN: 9812709061
Category : Computers
Languages : en
Pages : 275

Get Book Here

Book Description
The explosion of data arising from rapid advances in communication, sensing and computational power has concentrated research effort on more advanced techniques for the representation, processing, analysis and interpretation of data sets. In view of these exciting developments, the program OC Mathematics and Computation in Imaging Science and Information ProcessingOCO was held at the Institute for Mathematical Sciences, National University of Singapore, from July to December 2003 and in August 2004 to promote and facilitate multidisciplinary research in the area. As part of the program, a series of tutorial lectures were conducted by international experts on a wide variety of topics in mathematical image, signal and information processing. This compiled volume contains survey articles by the tutorial speakers, all specialists in their respective areas. They collectively provide graduate students and researchers new to the field a unique and valuable introduction to a range of important topics at the frontiers of current research. Sample Chapter(s). Foreword (46 KB). Chapter 1: Subdivision on Arbitrary Meshes: Algorithms and Theory (771 KB). Contents: Subdivision on Arbitrary Meshes: Algorithms and Theory (D Zorin); High Order Numerical Methods for Time Dependent Hamilton-Jacobi Equations (C-W Shu); Theory and Computation of Variational Image Deblurring (T F Chan & J Shen); Data Hiding OCo Theory and Algorithms (P Moulin & R Koetter); Image Steganography and Steganalysis: Concepts and Practice (M Kharrazi et al.); The Apriori Algorithm OCo A Tutorial (M Hegland). Readership: Graduate students and researchers in mathematical image, signal and information processing."

Numerical Methods for Nonlinear Variational Problems

Numerical Methods for Nonlinear Variational Problems PDF Author: Roland Glowinski
Publisher: Springer Science & Business Media
ISBN: 3662126133
Category : Science
Languages : en
Pages : 506

Get Book Here

Book Description
This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.

Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws PDF Author: LEVEQUE
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221

Get Book Here

Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

Lectures on Numerical Mathematics

Lectures on Numerical Mathematics PDF Author: H. Rutishauser
Publisher: Springer Science & Business Media
ISBN: 1461234689
Category : Mathematics
Languages : en
Pages : 559

Get Book Here

Book Description
The present book is an edition of the manuscripts to the courses "Numerical Methods I" and "Numerical Mathematics I and II" which Professor H. Rutishauser held at the E.T.H. in Zurich. The first-named course was newly conceived in the spring semester of 1970, and intended for beginners, while the two others were given repeatedly as elective courses in the sixties. For an understanding of most chapters the funda mentals of linear algebra and calculus suffice. In some places a little complex variable theory is used in addition. However, the reader can get by without any knowledge of functional analysis. The first seven chapters discuss the direct solution of systems of linear equations, the solution of nonlinear systems, least squares prob lems, interpolation by polynomials, numerical quadrature, and approxima tion by Chebyshev series and by Remez' algorithm. The remaining chapters include the treatment of ordinary and partial differential equa tions, the iterative solution of linear equations, and a discussion of eigen value problems. In addition, there is an appendix dealing with the qd algorithm and with an axiomatic treatment of computer arithmetic.

Numerical Solution of Partial Differential Equations by the Finite Element Method

Numerical Solution of Partial Differential Equations by the Finite Element Method PDF Author: Claes Johnson
Publisher: Courier Corporation
ISBN: 0486131599
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Lecture Notes on Numerical Methods for Hyperbolic Equations

Lecture Notes on Numerical Methods for Hyperbolic Equations PDF Author: Elena Vázquez-Cendón
Publisher: CRC Press
ISBN: 0203590627
Category : Mathematics
Languages : en
Pages : 144

Get Book Here

Book Description
This volume contains the lecture notes of the Short Course on Numerical Methods for Hyperbolic Equations (Faculty of Mathematics, University of Santiago de Compostela, Spain, 2-4 July 2011). The course was organized in recognition of Prof. Eleuterio Toro‘s contribution to education and training on numerical methods for partial differential equation

Time-Dependent Problems and Difference Methods

Time-Dependent Problems and Difference Methods PDF Author: Bertil Gustafsson
Publisher: John Wiley & Sons
ISBN: 1118548523
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
Praise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Spectral Methods for Time-Dependent Problems

Spectral Methods for Time-Dependent Problems PDF Author: Jan S. Hesthaven
Publisher: Cambridge University Press
ISBN: 113945952X
Category : Mathematics
Languages : en
Pages : 4

Get Book Here

Book Description
Spectral methods are well-suited to solve problems modeled by time-dependent partial differential equations: they are fast, efficient and accurate and widely used by mathematicians and practitioners. This class-tested 2007 introduction, the first on the subject, is ideal for graduate courses, or self-study. The authors describe the basic theory of spectral methods, allowing the reader to understand the techniques through numerous examples as well as more rigorous developments. They provide a detailed treatment of methods based on Fourier expansions and orthogonal polynomials (including discussions of stability, boundary conditions, filtering, and the extension from the linear to the nonlinear situation). Computational solution techniques for integration in time are dealt with by Runge-Kutta type methods. Several chapters are devoted to material not previously covered in book form, including stability theory for polynomial methods, techniques for problems with discontinuous solutions, round-off errors and the formulation of spectral methods on general grids. These will be especially helpful for practitioners.