Author: R.S. Bucy
Publisher: Springer Science & Business Media
ISBN: 1461383927
Category : Science
Languages : en
Pages : 162
Book Description
The theory of linear discrete time filtering started with a paper by Kol mogorov in 1941. He addressed the problem for stationary random se quences and introduced the idea of the innovations process, which is a useful tool for the more general problems considered here. The reader may object and note that Gauss discovered least squares much earlier; however, I want to distinguish between the problem of parameter estimation, the Gauss problem, and that of Kolmogorov estimation of a process. This sep aration is of more than academic interest as the least squares problem leads to the normal equations, which are numerically ill conditioned, while the process estimation problem in the linear case with appropriate assumptions leads to uniformly asymptotically stable equations for the estimator and the gain. The conditions relate to controlability and observability and will be detailed in this volume. In the present volume, we present a series of lectures on linear and nonlinear sequential filtering theory. The theory is due to Kalman for the linear colored observation noise problem; in the case of white observation noise it is the analog of the continuous-time Kalman-Bucy theory. The discrete time filtering theory requires only modest mathematical tools in counterpoint to the continuous time theory and is aimed at a senior-level undergraduate course. The present book, organized by lectures, is actually based on a course that meets once a week for three hours, with each meeting constituting a lecture.
Lectures on Discrete Time Filtering
Author: R.S. Bucy
Publisher: Springer Science & Business Media
ISBN: 1461383927
Category : Science
Languages : en
Pages : 162
Book Description
The theory of linear discrete time filtering started with a paper by Kol mogorov in 1941. He addressed the problem for stationary random se quences and introduced the idea of the innovations process, which is a useful tool for the more general problems considered here. The reader may object and note that Gauss discovered least squares much earlier; however, I want to distinguish between the problem of parameter estimation, the Gauss problem, and that of Kolmogorov estimation of a process. This sep aration is of more than academic interest as the least squares problem leads to the normal equations, which are numerically ill conditioned, while the process estimation problem in the linear case with appropriate assumptions leads to uniformly asymptotically stable equations for the estimator and the gain. The conditions relate to controlability and observability and will be detailed in this volume. In the present volume, we present a series of lectures on linear and nonlinear sequential filtering theory. The theory is due to Kalman for the linear colored observation noise problem; in the case of white observation noise it is the analog of the continuous-time Kalman-Bucy theory. The discrete time filtering theory requires only modest mathematical tools in counterpoint to the continuous time theory and is aimed at a senior-level undergraduate course. The present book, organized by lectures, is actually based on a course that meets once a week for three hours, with each meeting constituting a lecture.
Publisher: Springer Science & Business Media
ISBN: 1461383927
Category : Science
Languages : en
Pages : 162
Book Description
The theory of linear discrete time filtering started with a paper by Kol mogorov in 1941. He addressed the problem for stationary random se quences and introduced the idea of the innovations process, which is a useful tool for the more general problems considered here. The reader may object and note that Gauss discovered least squares much earlier; however, I want to distinguish between the problem of parameter estimation, the Gauss problem, and that of Kolmogorov estimation of a process. This sep aration is of more than academic interest as the least squares problem leads to the normal equations, which are numerically ill conditioned, while the process estimation problem in the linear case with appropriate assumptions leads to uniformly asymptotically stable equations for the estimator and the gain. The conditions relate to controlability and observability and will be detailed in this volume. In the present volume, we present a series of lectures on linear and nonlinear sequential filtering theory. The theory is due to Kalman for the linear colored observation noise problem; in the case of white observation noise it is the analog of the continuous-time Kalman-Bucy theory. The discrete time filtering theory requires only modest mathematical tools in counterpoint to the continuous time theory and is aimed at a senior-level undergraduate course. The present book, organized by lectures, is actually based on a course that meets once a week for three hours, with each meeting constituting a lecture.
Sequential Monte Carlo Methods for Nonlinear Discrete-time Filtering
Author: Marcelo G. S. Bruno
Publisher: Morgan & Claypool Publishers
ISBN: 1627051198
Category : Computers
Languages : en
Pages : 101
Book Description
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation.
Publisher: Morgan & Claypool Publishers
ISBN: 1627051198
Category : Computers
Languages : en
Pages : 101
Book Description
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation.
Lectures on Discrete Time Filtering
Author: R.S. Bucy
Publisher: Springer
ISBN: 9781461383932
Category : Science
Languages : en
Pages : 156
Book Description
The theory of linear discrete time filtering started with a paper by Kol mogorov in 1941. He addressed the problem for stationary random se quences and introduced the idea of the innovations process, which is a useful tool for the more general problems considered here. The reader may object and note that Gauss discovered least squares much earlier; however, I want to distinguish between the problem of parameter estimation, the Gauss problem, and that of Kolmogorov estimation of a process. This sep aration is of more than academic interest as the least squares problem leads to the normal equations, which are numerically ill conditioned, while the process estimation problem in the linear case with appropriate assumptions leads to uniformly asymptotically stable equations for the estimator and the gain. The conditions relate to controlability and observability and will be detailed in this volume. In the present volume, we present a series of lectures on linear and nonlinear sequential filtering theory. The theory is due to Kalman for the linear colored observation noise problem; in the case of white observation noise it is the analog of the continuous-time Kalman-Bucy theory. The discrete time filtering theory requires only modest mathematical tools in counterpoint to the continuous time theory and is aimed at a senior-level undergraduate course. The present book, organized by lectures, is actually based on a course that meets once a week for three hours, with each meeting constituting a lecture.
Publisher: Springer
ISBN: 9781461383932
Category : Science
Languages : en
Pages : 156
Book Description
The theory of linear discrete time filtering started with a paper by Kol mogorov in 1941. He addressed the problem for stationary random se quences and introduced the idea of the innovations process, which is a useful tool for the more general problems considered here. The reader may object and note that Gauss discovered least squares much earlier; however, I want to distinguish between the problem of parameter estimation, the Gauss problem, and that of Kolmogorov estimation of a process. This sep aration is of more than academic interest as the least squares problem leads to the normal equations, which are numerically ill conditioned, while the process estimation problem in the linear case with appropriate assumptions leads to uniformly asymptotically stable equations for the estimator and the gain. The conditions relate to controlability and observability and will be detailed in this volume. In the present volume, we present a series of lectures on linear and nonlinear sequential filtering theory. The theory is due to Kalman for the linear colored observation noise problem; in the case of white observation noise it is the analog of the continuous-time Kalman-Bucy theory. The discrete time filtering theory requires only modest mathematical tools in counterpoint to the continuous time theory and is aimed at a senior-level undergraduate course. The present book, organized by lectures, is actually based on a course that meets once a week for three hours, with each meeting constituting a lecture.
Optimal and Robust Estimation
Author: Frank L. Lewis
Publisher: CRC Press
ISBN: 1420008293
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.
Publisher: CRC Press
ISBN: 1420008293
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.
Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering
Author: Marcelo G.
Publisher: Springer Nature
ISBN: 3031025350
Category : Technology & Engineering
Languages : en
Pages : 87
Book Description
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary
Publisher: Springer Nature
ISBN: 3031025350
Category : Technology & Engineering
Languages : en
Pages : 87
Book Description
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary
Lecture Notes on the Mathematics of Acoustics
Author: Matthew C. M. Wright
Publisher: World Scientific
ISBN: 1860944965
Category : Science
Languages : en
Pages : 308
Book Description
Based on lectures given at a one week summer school held at the University of Southampton, July 2003.
Publisher: World Scientific
ISBN: 1860944965
Category : Science
Languages : en
Pages : 308
Book Description
Based on lectures given at a one week summer school held at the University of Southampton, July 2003.
Optimal Filtering
Author: Brian D. O. Anderson
Publisher: Courier Corporation
ISBN: 0486136892
Category : Science
Languages : en
Pages : 370
Book Description
Graduate-level text extends studies of signal processing, particularly regarding communication systems and digital filtering theory. Topics include filtering, linear systems, and estimation; discrete-time Kalman filter; time-invariant filters; more. 1979 edition.
Publisher: Courier Corporation
ISBN: 0486136892
Category : Science
Languages : en
Pages : 370
Book Description
Graduate-level text extends studies of signal processing, particularly regarding communication systems and digital filtering theory. Topics include filtering, linear systems, and estimation; discrete-time Kalman filter; time-invariant filters; more. 1979 edition.
Discrete-Time Signal Processing
Author: Alan V. Oppenheim
Publisher: Pearson Education India
ISBN: 9788131704929
Category : Discrete-time systems
Languages : en
Pages : 914
Book Description
Publisher: Pearson Education India
ISBN: 9788131704929
Category : Discrete-time systems
Languages : en
Pages : 914
Book Description
Fundamentals of Stochastic Filtering
Author: Alan Bain
Publisher: Springer Science & Business Media
ISBN: 0387768963
Category : Mathematics
Languages : en
Pages : 395
Book Description
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.
Publisher: Springer Science & Business Media
ISBN: 0387768963
Category : Mathematics
Languages : en
Pages : 395
Book Description
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.
Smoothing, Filtering and Prediction
Author: Garry Einicke
Publisher: BoD – Books on Demand
ISBN: 9533077522
Category : Computers
Languages : en
Pages : 290
Book Description
This book describes the classical smoothing, filtering and prediction techniques together with some more recently developed embellishments for improving performance within applications. It aims to present the subject in an accessible way, so that it can serve as a practical guide for undergraduates and newcomers to the field. The material is organised as a ten-lecture course. The foundations are laid in Chapters 1 and 2, which explain minimum-mean-square-error solution construction and asymptotic behaviour. Chapters 3 and 4 introduce continuous-time and discrete-time minimum-variance filtering. Generalisations for missing data, deterministic inputs, correlated noises, direct feedthrough terms, output estimation and equalisation are described. Chapter 5 simplifies the minimum-variance filtering results for steady-state problems. Observability, Riccati equation solution convergence, asymptotic stability and Wiener filter equivalence are discussed. Chapters 6 and 7 cover the subject of continuous-time and discrete-time smoothing. The main fixed-lag, fixed-point and fixed-interval smoother results are derived. It is shown that the minimum-variance fixed-interval smoother attains the best performance. Chapter 8 attends to parameter estimation. As the above-mentioned approaches all rely on knowledge of the underlying model parameters, maximum-likelihood techniques within expectation-maximisation algorithms for joint state and parameter estimation are described. Chapter 9 is concerned with robust techniques that accommodate uncertainties within problem specifications. An extra term within Riccati equations enables designers to trade-off average error and peak error performance. Chapter 10 rounds off the course by applying the afore-mentioned linear techniques to nonlinear estimation problems. It is demonstrated that step-wise linearisations can be used within predictors, filters and smoothers, albeit by forsaking optimal performance guarantees.
Publisher: BoD – Books on Demand
ISBN: 9533077522
Category : Computers
Languages : en
Pages : 290
Book Description
This book describes the classical smoothing, filtering and prediction techniques together with some more recently developed embellishments for improving performance within applications. It aims to present the subject in an accessible way, so that it can serve as a practical guide for undergraduates and newcomers to the field. The material is organised as a ten-lecture course. The foundations are laid in Chapters 1 and 2, which explain minimum-mean-square-error solution construction and asymptotic behaviour. Chapters 3 and 4 introduce continuous-time and discrete-time minimum-variance filtering. Generalisations for missing data, deterministic inputs, correlated noises, direct feedthrough terms, output estimation and equalisation are described. Chapter 5 simplifies the minimum-variance filtering results for steady-state problems. Observability, Riccati equation solution convergence, asymptotic stability and Wiener filter equivalence are discussed. Chapters 6 and 7 cover the subject of continuous-time and discrete-time smoothing. The main fixed-lag, fixed-point and fixed-interval smoother results are derived. It is shown that the minimum-variance fixed-interval smoother attains the best performance. Chapter 8 attends to parameter estimation. As the above-mentioned approaches all rely on knowledge of the underlying model parameters, maximum-likelihood techniques within expectation-maximisation algorithms for joint state and parameter estimation are described. Chapter 9 is concerned with robust techniques that accommodate uncertainties within problem specifications. An extra term within Riccati equations enables designers to trade-off average error and peak error performance. Chapter 10 rounds off the course by applying the afore-mentioned linear techniques to nonlinear estimation problems. It is demonstrated that step-wise linearisations can be used within predictors, filters and smoothers, albeit by forsaking optimal performance guarantees.