Author: V. I. Arnold
Publisher: American Mathematical Soc.
ISBN: 147042259X
Category : Education
Languages : en
Pages : 186
Book Description
Vladimir Arnold (1937-2010) was one of the great mathematical minds of the late 20th century. He did significant work in many areas of the field. On another level, he was keeping with a strong tradition in Russian mathematics to write for and to directly teach younger students interested in mathematics. This book contains some examples of Arnold's contributions to the genre. "Continued Fractions" takes a common enrichment topic in high school math and pulls it in directions that only a master of mathematics could envision. "Euler Groups" treats a similar enrichment topic, but it is rarely treated with the depth and imagination lavished on it in Arnold's text. He sets it in a mathematical context, bringing to bear numerous tools of the trade and expanding the topic way beyond its usual treatment. In "Complex Numbers" the context is physics, yet Arnold artfully extracts the mathematical aspects of the discussion in a way that students can understand long before they master the field of quantum mechanics. "Problems for Children 5 to 15 Years Old" must be read as a collection of the author's favorite intellectual morsels. Many are not original, but all are worth thinking about, and each requires the solver to think out of his or her box. Dmitry Fuchs, a long-term friend and collaborator of Arnold, provided solutions to some of the problems. Readers are of course invited to select their own favorites and construct their own favorite solutions. In reading these essays, one has the sensation of walking along a path that is found to ascend a mountain peak and then being shown a vista whose existence one could never suspect from the ground. Arnold's style of exposition is unforgiving. The reader--even a professional mathematician--will find paragraphs that require hours of thought to unscramble, and he or she must have patience with the ellipses of thought and the leaps of reason. These are all part of Arnold's intent. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Lectures and Problems: A Gift to Young Mathematicians
Author: V. I. Arnold
Publisher: American Mathematical Soc.
ISBN: 147042259X
Category : Education
Languages : en
Pages : 186
Book Description
Vladimir Arnold (1937-2010) was one of the great mathematical minds of the late 20th century. He did significant work in many areas of the field. On another level, he was keeping with a strong tradition in Russian mathematics to write for and to directly teach younger students interested in mathematics. This book contains some examples of Arnold's contributions to the genre. "Continued Fractions" takes a common enrichment topic in high school math and pulls it in directions that only a master of mathematics could envision. "Euler Groups" treats a similar enrichment topic, but it is rarely treated with the depth and imagination lavished on it in Arnold's text. He sets it in a mathematical context, bringing to bear numerous tools of the trade and expanding the topic way beyond its usual treatment. In "Complex Numbers" the context is physics, yet Arnold artfully extracts the mathematical aspects of the discussion in a way that students can understand long before they master the field of quantum mechanics. "Problems for Children 5 to 15 Years Old" must be read as a collection of the author's favorite intellectual morsels. Many are not original, but all are worth thinking about, and each requires the solver to think out of his or her box. Dmitry Fuchs, a long-term friend and collaborator of Arnold, provided solutions to some of the problems. Readers are of course invited to select their own favorites and construct their own favorite solutions. In reading these essays, one has the sensation of walking along a path that is found to ascend a mountain peak and then being shown a vista whose existence one could never suspect from the ground. Arnold's style of exposition is unforgiving. The reader--even a professional mathematician--will find paragraphs that require hours of thought to unscramble, and he or she must have patience with the ellipses of thought and the leaps of reason. These are all part of Arnold's intent. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Publisher: American Mathematical Soc.
ISBN: 147042259X
Category : Education
Languages : en
Pages : 186
Book Description
Vladimir Arnold (1937-2010) was one of the great mathematical minds of the late 20th century. He did significant work in many areas of the field. On another level, he was keeping with a strong tradition in Russian mathematics to write for and to directly teach younger students interested in mathematics. This book contains some examples of Arnold's contributions to the genre. "Continued Fractions" takes a common enrichment topic in high school math and pulls it in directions that only a master of mathematics could envision. "Euler Groups" treats a similar enrichment topic, but it is rarely treated with the depth and imagination lavished on it in Arnold's text. He sets it in a mathematical context, bringing to bear numerous tools of the trade and expanding the topic way beyond its usual treatment. In "Complex Numbers" the context is physics, yet Arnold artfully extracts the mathematical aspects of the discussion in a way that students can understand long before they master the field of quantum mechanics. "Problems for Children 5 to 15 Years Old" must be read as a collection of the author's favorite intellectual morsels. Many are not original, but all are worth thinking about, and each requires the solver to think out of his or her box. Dmitry Fuchs, a long-term friend and collaborator of Arnold, provided solutions to some of the problems. Readers are of course invited to select their own favorites and construct their own favorite solutions. In reading these essays, one has the sensation of walking along a path that is found to ascend a mountain peak and then being shown a vista whose existence one could never suspect from the ground. Arnold's style of exposition is unforgiving. The reader--even a professional mathematician--will find paragraphs that require hours of thought to unscramble, and he or she must have patience with the ellipses of thought and the leaps of reason. These are all part of Arnold's intent. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Mathematical Understanding of Nature
Author: Vladimir Igorevich Arnolʹd
Publisher: American Mathematical Soc.
ISBN: 1470418894
Category : Mathematics
Languages : en
Pages : 184
Book Description
"This collection of 39 short stories gives the reader a unique opportunity to take a look at the scientific philosophy of Vladimir Arnold, one of the most original contemporary researchers. Topics of the stories included range from astronomy, to mirages, to motion of glaciers, to geometry of mirrors and beyond. In each case Arnold's explanation is both deep and simple, which makes the book interesting and accessible to an extremely broad readership. Original illustrations hand drawn by the author help the reader to further understand and appreciate Arnold's view on the relationship between mathematics and science."--
Publisher: American Mathematical Soc.
ISBN: 1470418894
Category : Mathematics
Languages : en
Pages : 184
Book Description
"This collection of 39 short stories gives the reader a unique opportunity to take a look at the scientific philosophy of Vladimir Arnold, one of the most original contemporary researchers. Topics of the stories included range from astronomy, to mirages, to motion of glaciers, to geometry of mirrors and beyond. In each case Arnold's explanation is both deep and simple, which makes the book interesting and accessible to an extremely broad readership. Original illustrations hand drawn by the author help the reader to further understand and appreciate Arnold's view on the relationship between mathematics and science."--
Arnold's Problems
Author: Vladimir I. Arnold
Publisher: Springer Science & Business Media
ISBN: 9783540206149
Category : Mathematics
Languages : en
Pages : 664
Book Description
Vladimir Arnold is one of the most outstanding mathematicians of our time Many of these problems are at the front line of current research
Publisher: Springer Science & Business Media
ISBN: 9783540206149
Category : Mathematics
Languages : en
Pages : 664
Book Description
Vladimir Arnold is one of the most outstanding mathematicians of our time Many of these problems are at the front line of current research
Math Out Loud: An Oral Olympiad Handbook
Author: Steven Klee
Publisher: American Mathematical Soc.
ISBN: 1470466937
Category : Education
Languages : en
Pages : 243
Book Description
Math Hour Olympiads is a non-standard method of training middle- and high-school students interested in mathematics where students spend several hours thinking about a few difficult and unusual problems. When a student solves a problem, the solution is presented orally to a pair of friendly judges. Discussing the solutions with the judges creates a personal and engaging mathematical experience for the students and introduces them to the true nature of mathematical proof and problem solving. This book recounts the authors' experiences from the first ten years of running a Math Hour Olympiad at the University of Washington in Seattle. The major part of the book is devoted to problem sets and detailed solutions, complemented by a practical guide for anyone who would like to organize an oral olympiad for students in their community. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Publisher: American Mathematical Soc.
ISBN: 1470466937
Category : Education
Languages : en
Pages : 243
Book Description
Math Hour Olympiads is a non-standard method of training middle- and high-school students interested in mathematics where students spend several hours thinking about a few difficult and unusual problems. When a student solves a problem, the solution is presented orally to a pair of friendly judges. Discussing the solutions with the judges creates a personal and engaging mathematical experience for the students and introduces them to the true nature of mathematical proof and problem solving. This book recounts the authors' experiences from the first ten years of running a Math Hour Olympiad at the University of Washington in Seattle. The major part of the book is devoted to problem sets and detailed solutions, complemented by a practical guide for anyone who would like to organize an oral olympiad for students in their community. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Experimental Mathematics
Author: V. I. Arnold
Publisher: American Mathematical Soc.
ISBN: 0821894161
Category : Mathematics
Languages : en
Pages : 170
Book Description
One of the traditional ways mathematical ideas and even new areas of mathematics are created is from experiments. One of the best-known examples is that of the Fermat hypothesis, which was conjectured by Fermat in his attempts to find integer solutions for the famous Fermat equation. This hypothesis led to the creation of a whole field of knowledge, but it was proved only after several hundred years. This book, based on the author's lectures, presents several new directions of mathematical research. All of these directions are based on numerical experiments conducted by the author, which led to new hypotheses that currently remain open, i.e., are neither proved nor disproved. The hypotheses range from geometry and topology (statistics of plane curves and smooth functions) to combinatorics (combinatorial complexity and random permutations) to algebra and number theory (continuous fractions and Galois groups). For each subject, the author describes the problem and presents numerical results that led him to a particular conjecture. In the majority of cases there is an indication of how the readers can approach the formulated conjectures (at least by conducting more numerical experiments). Written in Arnold's unique style, the book is intended for a wide range of mathematicians, from high school students interested in exploring unusual areas of mathematics on their own, to college and graduate students, to researchers interested in gaining a new, somewhat nontraditional perspective on doing mathematics. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI).
Publisher: American Mathematical Soc.
ISBN: 0821894161
Category : Mathematics
Languages : en
Pages : 170
Book Description
One of the traditional ways mathematical ideas and even new areas of mathematics are created is from experiments. One of the best-known examples is that of the Fermat hypothesis, which was conjectured by Fermat in his attempts to find integer solutions for the famous Fermat equation. This hypothesis led to the creation of a whole field of knowledge, but it was proved only after several hundred years. This book, based on the author's lectures, presents several new directions of mathematical research. All of these directions are based on numerical experiments conducted by the author, which led to new hypotheses that currently remain open, i.e., are neither proved nor disproved. The hypotheses range from geometry and topology (statistics of plane curves and smooth functions) to combinatorics (combinatorial complexity and random permutations) to algebra and number theory (continuous fractions and Galois groups). For each subject, the author describes the problem and presents numerical results that led him to a particular conjecture. In the majority of cases there is an indication of how the readers can approach the formulated conjectures (at least by conducting more numerical experiments). Written in Arnold's unique style, the book is intended for a wide range of mathematicians, from high school students interested in exploring unusual areas of mathematics on their own, to college and graduate students, to researchers interested in gaining a new, somewhat nontraditional perspective on doing mathematics. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI).
Mathematics via Problems
Author: Arkadiy Skopenkov
Publisher: American Mathematical Society, Mathematical Sciences Research Institute
ISBN: 1470448785
Category : Mathematics
Languages : en
Pages : 196
Book Description
This book is a translation from Russian of Part I of the book Mathematics Through Problems: From Olympiads and Math Circles to Profession. The other two parts, Geometry and Combinatorics, will be published soon. The main goal of this book is to develop important parts of mathematics through problems. The author tries to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover and recreate much of elementary mathematics and start edging into the sophisticated world of topics such as group theory, Galois theory, and so on, thus building a bridge (by showing that there is no gap) between standard high school exercises and more intricate and abstract concepts in mathematics. Definitions and/or references for material that is not standard in the school curriculum are included. However, many topics in the book are difficult when you start learning them from scratch. To help with this, problems are carefully arranged to provide gradual introduction into each subject. Problems are often accompanied by hints and/or complete solutions The book is based on classes taught by the author at different times at the Independent University of Moscow, at a number of Moscow schools and math circles, and at various summer schools. It can be used by high school students and undergraduates, their teachers, and organizers of summer camps and math circles. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Publisher: American Mathematical Society, Mathematical Sciences Research Institute
ISBN: 1470448785
Category : Mathematics
Languages : en
Pages : 196
Book Description
This book is a translation from Russian of Part I of the book Mathematics Through Problems: From Olympiads and Math Circles to Profession. The other two parts, Geometry and Combinatorics, will be published soon. The main goal of this book is to develop important parts of mathematics through problems. The author tries to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover and recreate much of elementary mathematics and start edging into the sophisticated world of topics such as group theory, Galois theory, and so on, thus building a bridge (by showing that there is no gap) between standard high school exercises and more intricate and abstract concepts in mathematics. Definitions and/or references for material that is not standard in the school curriculum are included. However, many topics in the book are difficult when you start learning them from scratch. To help with this, problems are carefully arranged to provide gradual introduction into each subject. Problems are often accompanied by hints and/or complete solutions The book is based on classes taught by the author at different times at the Independent University of Moscow, at a number of Moscow schools and math circles, and at various summer schools. It can be used by high school students and undergraduates, their teachers, and organizers of summer camps and math circles. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
The Princeton Companion to Mathematics
Author: Timothy Gowers
Publisher: Princeton University Press
ISBN: 1400830397
Category : Mathematics
Languages : en
Pages : 1057
Book Description
The ultimate mathematics reference book This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries—written especially for this book by some of the world's leading mathematicians—that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music—and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors include: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, and Doron Zeilberger
Publisher: Princeton University Press
ISBN: 1400830397
Category : Mathematics
Languages : en
Pages : 1057
Book Description
The ultimate mathematics reference book This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries—written especially for this book by some of the world's leading mathematicians—that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music—and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors include: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, and Doron Zeilberger
What's Happening in the Mathematical Sciences
Author: Barry Cipra
Publisher: American Mathematical Soc.
ISBN: 9780821890431
Category : Science
Languages : en
Pages : 108
Book Description
Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of solutions to the three-body problem. And other new work may answer one of cosmology'smost fundamental questions: What is the size and shape of the universe? Mathematics and Everyday Life Traffic jams: New models are helping researchers understand where traffic jams come from-and maybe what to do about them! Small worlds: Researchers have found a short distance from theory to applications in the study of small world networks. Elegance in Mathematics Beyond Fermat's Last Theorem: Number theorists are reaching higher ground after Wiles' astounding 1994 proof: new developments inthe elegant world of elliptic curves and modular functions. The Millennium Prize Problems: The Clay Mathematics Institute has offered a million dollars for solutions to seven important and difficult unsolved problems. These are just some of the topics of current interest that are covered in thislatest volume of What's Happening in the Mathematical Sciences. The book has broad appeal for a wide spectrum of mathematicians and scientists, from high school students through advanced-level graduates and researchers.
Publisher: American Mathematical Soc.
ISBN: 9780821890431
Category : Science
Languages : en
Pages : 108
Book Description
Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of solutions to the three-body problem. And other new work may answer one of cosmology'smost fundamental questions: What is the size and shape of the universe? Mathematics and Everyday Life Traffic jams: New models are helping researchers understand where traffic jams come from-and maybe what to do about them! Small worlds: Researchers have found a short distance from theory to applications in the study of small world networks. Elegance in Mathematics Beyond Fermat's Last Theorem: Number theorists are reaching higher ground after Wiles' astounding 1994 proof: new developments inthe elegant world of elliptic curves and modular functions. The Millennium Prize Problems: The Clay Mathematics Institute has offered a million dollars for solutions to seven important and difficult unsolved problems. These are just some of the topics of current interest that are covered in thislatest volume of What's Happening in the Mathematical Sciences. The book has broad appeal for a wide spectrum of mathematicians and scientists, from high school students through advanced-level graduates and researchers.
Mathematics via Problems
Author: Mikhail B. Skopenkov
Publisher: American Mathematical Society, Simons Laufer Mathematical Sciences Institute (SLMath, formerly MSRI)
ISBN: 1470460106
Category : Mathematics
Languages : en
Pages : 222
Book Description
This book is a translation from Russian of Part III of the book Mathematics via Problems: From Olympiads and Math Circles to Profession. Part I, Algebra, and Part II, Geometry, have been published in the same series. The main goal of this book is to develop important parts of mathematics through problems. The authors tried to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover such topics in combinatorics as counting, graphs, constructions and invariants in combinatorics, games and algorithms, probabilistic aspects of combinatorics, and combinatorial geometry. Definitions and/or references for material that is not standard in the school curriculum are included. To help students that might be unfamiliar with new material, problems are carefully arranged to provide gradual introduction into each subject. Problems are often accompanied by hints and/or complete solutions. The book is based on classes taught by the authors at different times at the Independent University of Moscow, at a number of Moscow schools and math circles, and at various summer schools. It can be used by high school students and undergraduates, their teachers, and organizers of summer camps and math circles. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, SLMath (formerly MSRI) and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Publisher: American Mathematical Society, Simons Laufer Mathematical Sciences Institute (SLMath, formerly MSRI)
ISBN: 1470460106
Category : Mathematics
Languages : en
Pages : 222
Book Description
This book is a translation from Russian of Part III of the book Mathematics via Problems: From Olympiads and Math Circles to Profession. Part I, Algebra, and Part II, Geometry, have been published in the same series. The main goal of this book is to develop important parts of mathematics through problems. The authors tried to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover such topics in combinatorics as counting, graphs, constructions and invariants in combinatorics, games and algorithms, probabilistic aspects of combinatorics, and combinatorial geometry. Definitions and/or references for material that is not standard in the school curriculum are included. To help students that might be unfamiliar with new material, problems are carefully arranged to provide gradual introduction into each subject. Problems are often accompanied by hints and/or complete solutions. The book is based on classes taught by the authors at different times at the Independent University of Moscow, at a number of Moscow schools and math circles, and at various summer schools. It can be used by high school students and undergraduates, their teachers, and organizers of summer camps and math circles. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, SLMath (formerly MSRI) and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Titu Andreescu and Mark Saul
Author: Titu Andreescu
Publisher: American Mathematical Soc.
ISBN: 1470434644
Category : Juvenile Nonfiction
Languages : en
Pages : 137
Book Description
This book starts with simple arithmetic inequalities and builds to sophisticated inequality results such as the Cauchy-Schwarz and Chebyshev inequalities. Nothing beyond high school algebra is required of the student. The exposition is lean. Most of the learning occurs as the student engages in the problems posed in each chapter. And the learning is not “linear”. The central topic of inequalities is linked to others in mathematics. Often these topics relate to much more than algebraic inequalities. There are also “secret” pathways through the book. Each chapter has a subtext, a theme which prepares the student for learning other mathematical topics, concepts, or habits of mind. For example, the early chapters on the arithmetic mean/geometric mean inequality show how very simple observations can be leveraged to yield useful and interesting results. Later chapters give examples of how one can generalize a mathematical statement. The chapter on the Cauchy-Schwarz inequality provides an introduction to vectors as mathematical objects. And there are many other secret pathways that the authors hope the reader will discover—and follow. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Publisher: American Mathematical Soc.
ISBN: 1470434644
Category : Juvenile Nonfiction
Languages : en
Pages : 137
Book Description
This book starts with simple arithmetic inequalities and builds to sophisticated inequality results such as the Cauchy-Schwarz and Chebyshev inequalities. Nothing beyond high school algebra is required of the student. The exposition is lean. Most of the learning occurs as the student engages in the problems posed in each chapter. And the learning is not “linear”. The central topic of inequalities is linked to others in mathematics. Often these topics relate to much more than algebraic inequalities. There are also “secret” pathways through the book. Each chapter has a subtext, a theme which prepares the student for learning other mathematical topics, concepts, or habits of mind. For example, the early chapters on the arithmetic mean/geometric mean inequality show how very simple observations can be leveraged to yield useful and interesting results. Later chapters give examples of how one can generalize a mathematical statement. The chapter on the Cauchy-Schwarz inequality provides an introduction to vectors as mathematical objects. And there are many other secret pathways that the authors hope the reader will discover—and follow. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.