Learning Frameworks Utilizing Domain Knowledge for Reconstruction and Analysis of Biological and Communication Systems

Learning Frameworks Utilizing Domain Knowledge for Reconstruction and Analysis of Biological and Communication Systems PDF Author: Ziqi Ke
Publisher:
ISBN:
Category :
Languages : en
Pages : 302

Get Book Here

Book Description
In this thesis, we investigate learning frameworks for several problems in bioinformatics and communications. In particular, we present and study auto-encoder architectures for the challenging problems of haplotype and viral quasispecies reconstruction in bioinformatics, modulation/technology classification in communication systems, and reconstruction of biological as well as communication networks. A common thread that connects these subjects is exploitation and incorporation of domain specific knowledge in the design of developed learning frameworks. We begin by presenting the first ever neural network-based learning framework, which we refer to as GAEseq, for haplotype assembly and viral quasispecies reconstruction problems. Reconstructing components of a genomic mixture from data obtained by means of DNA sequencing is a challenging problem encountered in a variety of applications including single individual haplotyping and studies of viral communities. High-throughput DNA sequencing platforms oversample mixture components to provide massive amounts of reads whose relative positions can be determined by mapping the reads to a known reference genome; assembly of the components, however, requires discovery of the reads' origin -- an NP-hard problem that the existing methods struggle to solve with the required level of accuracy. The proposed algorithm is a neural network which essentially trains to ignore sequencing errors and infers the posterior probabilities of the origin of sequencing reads. Mixture components are then reconstructed by finding consensus of the reads determined to originate from the same genomic component. Results on realistic synthetic as well as experimental data demonstrate that the proposed framework reliably assembles haplotypes and reconstructs viral communities, often significantly outperforming state-of-the-art techniques. While capable of providing orders of magnitude higher accuracy than existing schemes, GAEseq is at disadvantage compared to competing methods when it comes to computational complexity. To this end, we developed an alternative learning framework for read clustering that is based on a convolutional auto-encoder. The proposed framework is designed to first project sequenced fragments to a low-dimensional space and then estimate the probability of the read origin using learned embedded features. The components are reconstructed by finding consensus sequences that agglomerate reads from the same origin. Mini-batch stochastic gradient descent and dimension reduction of reads allow the proposed method to efficiently deal with massive numbers of long reads. Experiments on simulated, semi-experimental and experimental data demonstrate the ability of the proposed method to reconstruct haplotypes and viral quasispecies with accuracy that parallels that of GAEseq while being significantly faster. We then turn our attention to problems in communications and propose a learning framework for technology/modulation classification. The proposed framework is based on an LSTM denoising auto-encoder designed to automatically extract stable and robust features from noisy radio signals, and infer modulation or technology type using the learned features. Identification of the type of communication technology and/or modulation scheme based on detected radio signal are challenging problems encountered in a variety of applications including spectrum allocation and radio interference mitigation. They are rendered difficult due to a growing number of emitter types and varied effects of real-world channels upon the radio signal. Existing spectrum monitoring techniques are capable of acquiring massive amounts of radio and real-time spectrum data using compact sensors deployed in a variety of settings. However, state-of-the-art methods that use such data to classify emitter types and detect communication schemes struggle to achieve required levels of accuracy at a computational efficiency that would allow their implementation on low-cost computational platforms. The proposed framework utilizes a compact neural network architecture readily implemented on a low-cost computational platform while exceeding state-of-the-art accuracy. Results on realistic synthetic as well as over-the-air radio data demonstrate that the proposed framework reliably and efficiently classifies received radio signals, often significantly outperforming state-of-the-art techniques. Finally, we propose to investigate the problem of reconstructing and analyzing networks based on the signals/information being "exchanged" between its nodes. Such tasks are encountered in both communication and biological networks; our focus will primarily be on the latter, where we are motivated by the problem of disease transmission. Understanding the transmission dynamics of a virus is of fundamental importance for establishing public health policies and putting an end to a disease outbreak. However, classical methods that rely on epidemiological data such as times of sample collection and exposure intervals struggle to provide desired insight due to limited informativeness of such data. In particular, the time of sample collection is an unreliable indicator of the time of infection, especially for a disease that may be asymptomatic long after the infection. Next-generation sequencing technologies enable real-time and accurate reconstruction of viral populations and thus allow the measurement of viral genetic distance between samples. Because viral genetic distance between viral strains present in different hosts contains valuable information about transmission history and due to the limitation of epidemiological data, it motivates the design of a method capable of detecting disease transmission clusters, reconstructing a directed disease transmission network and identifying super-spreaders in the network from viral genomic data. To this end, we proposed a novel end-to-end framework for the problem of understanding the transmission dynamics of a virus utilizing viral genomic data. Results on realistic synthetic as well as experimental data demonstrate that the proposed framework outperforms state-of-the-art techniques for understanding the transmission dynamics of a virus

Learning Frameworks Utilizing Domain Knowledge for Reconstruction and Analysis of Biological and Communication Systems

Learning Frameworks Utilizing Domain Knowledge for Reconstruction and Analysis of Biological and Communication Systems PDF Author: Ziqi Ke
Publisher:
ISBN:
Category :
Languages : en
Pages : 302

Get Book Here

Book Description
In this thesis, we investigate learning frameworks for several problems in bioinformatics and communications. In particular, we present and study auto-encoder architectures for the challenging problems of haplotype and viral quasispecies reconstruction in bioinformatics, modulation/technology classification in communication systems, and reconstruction of biological as well as communication networks. A common thread that connects these subjects is exploitation and incorporation of domain specific knowledge in the design of developed learning frameworks. We begin by presenting the first ever neural network-based learning framework, which we refer to as GAEseq, for haplotype assembly and viral quasispecies reconstruction problems. Reconstructing components of a genomic mixture from data obtained by means of DNA sequencing is a challenging problem encountered in a variety of applications including single individual haplotyping and studies of viral communities. High-throughput DNA sequencing platforms oversample mixture components to provide massive amounts of reads whose relative positions can be determined by mapping the reads to a known reference genome; assembly of the components, however, requires discovery of the reads' origin -- an NP-hard problem that the existing methods struggle to solve with the required level of accuracy. The proposed algorithm is a neural network which essentially trains to ignore sequencing errors and infers the posterior probabilities of the origin of sequencing reads. Mixture components are then reconstructed by finding consensus of the reads determined to originate from the same genomic component. Results on realistic synthetic as well as experimental data demonstrate that the proposed framework reliably assembles haplotypes and reconstructs viral communities, often significantly outperforming state-of-the-art techniques. While capable of providing orders of magnitude higher accuracy than existing schemes, GAEseq is at disadvantage compared to competing methods when it comes to computational complexity. To this end, we developed an alternative learning framework for read clustering that is based on a convolutional auto-encoder. The proposed framework is designed to first project sequenced fragments to a low-dimensional space and then estimate the probability of the read origin using learned embedded features. The components are reconstructed by finding consensus sequences that agglomerate reads from the same origin. Mini-batch stochastic gradient descent and dimension reduction of reads allow the proposed method to efficiently deal with massive numbers of long reads. Experiments on simulated, semi-experimental and experimental data demonstrate the ability of the proposed method to reconstruct haplotypes and viral quasispecies with accuracy that parallels that of GAEseq while being significantly faster. We then turn our attention to problems in communications and propose a learning framework for technology/modulation classification. The proposed framework is based on an LSTM denoising auto-encoder designed to automatically extract stable and robust features from noisy radio signals, and infer modulation or technology type using the learned features. Identification of the type of communication technology and/or modulation scheme based on detected radio signal are challenging problems encountered in a variety of applications including spectrum allocation and radio interference mitigation. They are rendered difficult due to a growing number of emitter types and varied effects of real-world channels upon the radio signal. Existing spectrum monitoring techniques are capable of acquiring massive amounts of radio and real-time spectrum data using compact sensors deployed in a variety of settings. However, state-of-the-art methods that use such data to classify emitter types and detect communication schemes struggle to achieve required levels of accuracy at a computational efficiency that would allow their implementation on low-cost computational platforms. The proposed framework utilizes a compact neural network architecture readily implemented on a low-cost computational platform while exceeding state-of-the-art accuracy. Results on realistic synthetic as well as over-the-air radio data demonstrate that the proposed framework reliably and efficiently classifies received radio signals, often significantly outperforming state-of-the-art techniques. Finally, we propose to investigate the problem of reconstructing and analyzing networks based on the signals/information being "exchanged" between its nodes. Such tasks are encountered in both communication and biological networks; our focus will primarily be on the latter, where we are motivated by the problem of disease transmission. Understanding the transmission dynamics of a virus is of fundamental importance for establishing public health policies and putting an end to a disease outbreak. However, classical methods that rely on epidemiological data such as times of sample collection and exposure intervals struggle to provide desired insight due to limited informativeness of such data. In particular, the time of sample collection is an unreliable indicator of the time of infection, especially for a disease that may be asymptomatic long after the infection. Next-generation sequencing technologies enable real-time and accurate reconstruction of viral populations and thus allow the measurement of viral genetic distance between samples. Because viral genetic distance between viral strains present in different hosts contains valuable information about transmission history and due to the limitation of epidemiological data, it motivates the design of a method capable of detecting disease transmission clusters, reconstructing a directed disease transmission network and identifying super-spreaders in the network from viral genomic data. To this end, we proposed a novel end-to-end framework for the problem of understanding the transmission dynamics of a virus utilizing viral genomic data. Results on realistic synthetic as well as experimental data demonstrate that the proposed framework outperforms state-of-the-art techniques for understanding the transmission dynamics of a virus

Occupational Therapy Practice Framework: Domain and Process

Occupational Therapy Practice Framework: Domain and Process PDF Author: Aota
Publisher: AOTA Press
ISBN: 9781569003619
Category : Medical
Languages : en
Pages : 51

Get Book Here

Book Description
As occupational therapy celebrates its centennial in 2017, attention returns to the profession's founding belief in the value of therapeutic occupations as a way to remediate illness and maintain health. The founders emphasized the importance of establishing a therapeutic relationship with each client and designing an intervention plan based on the knowledge about a client's context and environment, values, goals, and needs. Using today's lexicon, the profession's founders proposed a vision for the profession that was occupation based, client centered, and evidence based--the vision articulated in the third edition of the Occupational Therapy Practice Framework: Domain and Process. The Framework is a must-have official document from the American Occupational Therapy Association. Intended for occupational therapy practitioners and students, other health care professionals, educators, researchers, payers, and consumers, the Framework summarizes the interrelated constructs that describe occupational therapy practice. In addition to the creation of a new preface to set the tone for the work, this new edition includes the following highlights: a redefinition of the overarching statement describing occupational therapy's domain; a new definition of clients that includes persons, groups, and populations; further delineation of the profession's relationship to organizations; inclusion of activity demands as part of the process; and even more up-to-date analysis and guidance for today's occupational therapy practitioners. Achieving health, well-being, and participation in life through engagement in occupation is the overarching statement that describes the domain and process of occupational therapy in the fullest sense. The Framework can provide the structure and guidance that practitioners can use to meet this important goal.

Science Education Research and Practice in Europe

Science Education Research and Practice in Europe PDF Author: Doris Jorde
Publisher: Springer Science & Business Media
ISBN: 9460919006
Category : Education
Languages : en
Pages : 394

Get Book Here

Book Description
Each volume in the 7-volume series The World of Science Education reviews research in a key region of the world. These regions include North America, South and Latin America, Asia, Australia and New Zealand, Europe, Arab States, and Sub-Saharan Africa. The focus of this Handbook is on science education in Europe. In producing this volume the editors have invited a range of authors to describe their research in the context of developments in the continent and further afield. In reading this book you are invited to consider the historical, social and political contexts that have driven developments in science education research over the years. A unique feature of science education in Europe is the impact of the European Union on research and development over many years. A growing number of multi-national projects have contributed to the establishment of a community of researchers increasingly accepting of methodological diversity. That is not to say that Europe is moving towards homogeneity, as this volume clearly shows.

The Framework for Teaching Evaluation Instrument, 2013 Edition

The Framework for Teaching Evaluation Instrument, 2013 Edition PDF Author: Charlotte Danielson
Publisher:
ISBN: 9780615747002
Category : Classroom environment
Languages : en
Pages : 109

Get Book Here

Book Description
The framework for teaching document is an evolving instrument, but the core concepts and architecture (domains, components, and elements) have remained the same.Major concepts of the Common Core State Standards are included. For example, deep conceptual understanding, the importance of student intellectual engagement, and the precise use of language have always been at the foundation of the Framework for Teaching, but are more clearly articulated in this edition.The language has been tightened to increase ease of use and accuracy in assessment.Many of the enhancements to the Framework are located in the possible examples, rather than in the rubric language or critical attributes for each level of performance.

Mathematics for Machine Learning

Mathematics for Machine Learning PDF Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Transfer Learning

Transfer Learning PDF Author: Qiang Yang
Publisher: Cambridge University Press
ISBN: 1108860087
Category : Computers
Languages : en
Pages : 394

Get Book Here

Book Description
Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.

Knowing What Students Know

Knowing What Students Know PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309293227
Category : Education
Languages : en
Pages : 383

Get Book Here

Book Description
Education is a hot topic. From the stage of presidential debates to tonight's dinner table, it is an issue that most Americans are deeply concerned about. While there are many strategies for improving the educational process, we need a way to find out what works and what doesn't work as well. Educational assessment seeks to determine just how well students are learning and is an integral part of our quest for improved education. The nation is pinning greater expectations on educational assessment than ever before. We look to these assessment tools when documenting whether students and institutions are truly meeting education goals. But we must stop and ask a crucial question: What kind of assessment is most effective? At a time when traditional testing is subject to increasing criticism, research suggests that new, exciting approaches to assessment may be on the horizon. Advances in the sciences of how people learn and how to measure such learning offer the hope of developing new kinds of assessments-assessments that help students succeed in school by making as clear as possible the nature of their accomplishments and the progress of their learning. Knowing What Students Know essentially explains how expanding knowledge in the scientific fields of human learning and educational measurement can form the foundations of an improved approach to assessment. These advances suggest ways that the targets of assessment-what students know and how well they know it-as well as the methods used to make inferences about student learning can be made more valid and instructionally useful. Principles for designing and using these new kinds of assessments are presented, and examples are used to illustrate the principles. Implications for policy, practice, and research are also explored. With the promise of a productive research-based approach to assessment of student learning, Knowing What Students Know will be important to education administrators, assessment designers, teachers and teacher educators, and education advocates.

Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis PDF Author: S. Kevin Zhou
Publisher: Academic Press
ISBN: 0323858880
Category : Computers
Languages : en
Pages : 544

Get Book Here

Book Description
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis. · Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache

Graph Representation Learning

Graph Representation Learning PDF Author: William L. William L. Hamilton
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141

Get Book Here

Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare PDF Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385

Get Book Here

Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. Highlights different data techniques in healthcare data analysis, including machine learning and data mining Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks Includes applications and case studies across all areas of AI in healthcare data