Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 348
Book Description
In chapter one, you will learn to know the properties and events of each control in a Windows Visual C# application. You need to learn and know in order to be more familiar when applying them to some applications in this book. In chapter two, you will go through step by step to build a SALES database using MySQL. You will build each table and add associated data fields (along with the necessary keys and indexes). The first field in the Client table is ClientID. Enter the clien ID in the Name Field and select AutoNumber in the Data Type. You define primary key and other indexes which are useful for quick searching. ClientID is a primary field. You will define FamilyName as an index. You then will create Ordering table with three fields: OrderID, ClientID, and OrderDate. You then will create Purchase table with three fields: OrderID, ProductID, and Quantity. And you will create Product table with four fields: ProductID, Description, Price, and QtySold. Before designing Visual C# interface, you will build the relationships between four tables. The interface will be used to enter new orders into the database. The order form will be used to enter the following information into the database: order ID, order date, client ID, client’s first name and family name, client’s address, product information ordered. The form will have the ability to add new orders, find clients, add new clients. The completed order invoice will be provided in a printed report. In chapter three, you will build a database management system where you can store information about valuables in your warehouse. The table will have seven fields: Item (description of the item), Location (where the item was placed), Shop (where the item was purchased), DatePurchased (when the item was purchased), Cost (how much the item cost), SerialNumber (serial number of the item), PhotoFile (path of the photo file of the item), and Fragile (indicates whether a particular item is fragile or not). The development of this Warehouse Inventory Project will be performed, as usual, in a step-by-step manner. You will first create the database. Furthermore, the interface will be built so that the user can view, edit, add, or add data records from the database. Finally, you add code to create a printable list of information from the database. In chapter four, you will build an application that can be used to track daily high and low pollutant PM2.5 and air quality level. The steps that need to be taken in building Siantar Air Quality Index (SAQI) database project are: Build and test a Visual C# interface; Create an empty database using code; and Report database. The designed interface will allow the user to enter max pollutant, min pollutant, and air quality for any date that the user chooses in a particular year. This information will be stored in a database. Graphical result of the data will be provided, along with summary information relating to the maximum value, minimum value, and mean value. You will use a tab control as the main component of the interface. The control has three tabs: one for viewing and editing data, one for viewing graph of pollutant data, and another for viewing graph of air quality data. Each tab on this control operates like a Visual C# control panel. In chapter five, you will perform the steps necessary to build a MySQL book inventory database that contains 4 tables. You will build each table and add the associated fields as needed. You will have four tables in the database and define the relationship between the primary key and foreign key. You will associate AuthorID (foreign key) field in the Title_Author table with AuthorID (primary key) in the Author table. Then, you want to associate the ISBN (foreign key) field in Title_Author table with ISBN (primary key) in the Title table.
VISUAL C# .NET WITH MYSQL
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 348
Book Description
In chapter one, you will learn to know the properties and events of each control in a Windows Visual C# application. You need to learn and know in order to be more familiar when applying them to some applications in this book. In chapter two, you will go through step by step to build a SALES database using MySQL. You will build each table and add associated data fields (along with the necessary keys and indexes). The first field in the Client table is ClientID. Enter the clien ID in the Name Field and select AutoNumber in the Data Type. You define primary key and other indexes which are useful for quick searching. ClientID is a primary field. You will define FamilyName as an index. You then will create Ordering table with three fields: OrderID, ClientID, and OrderDate. You then will create Purchase table with three fields: OrderID, ProductID, and Quantity. And you will create Product table with four fields: ProductID, Description, Price, and QtySold. Before designing Visual C# interface, you will build the relationships between four tables. The interface will be used to enter new orders into the database. The order form will be used to enter the following information into the database: order ID, order date, client ID, client’s first name and family name, client’s address, product information ordered. The form will have the ability to add new orders, find clients, add new clients. The completed order invoice will be provided in a printed report. In chapter three, you will build a database management system where you can store information about valuables in your warehouse. The table will have seven fields: Item (description of the item), Location (where the item was placed), Shop (where the item was purchased), DatePurchased (when the item was purchased), Cost (how much the item cost), SerialNumber (serial number of the item), PhotoFile (path of the photo file of the item), and Fragile (indicates whether a particular item is fragile or not). The development of this Warehouse Inventory Project will be performed, as usual, in a step-by-step manner. You will first create the database. Furthermore, the interface will be built so that the user can view, edit, add, or add data records from the database. Finally, you add code to create a printable list of information from the database. In chapter four, you will build an application that can be used to track daily high and low pollutant PM2.5 and air quality level. The steps that need to be taken in building Siantar Air Quality Index (SAQI) database project are: Build and test a Visual C# interface; Create an empty database using code; and Report database. The designed interface will allow the user to enter max pollutant, min pollutant, and air quality for any date that the user chooses in a particular year. This information will be stored in a database. Graphical result of the data will be provided, along with summary information relating to the maximum value, minimum value, and mean value. You will use a tab control as the main component of the interface. The control has three tabs: one for viewing and editing data, one for viewing graph of pollutant data, and another for viewing graph of air quality data. Each tab on this control operates like a Visual C# control panel. In chapter five, you will perform the steps necessary to build a MySQL book inventory database that contains 4 tables. You will build each table and add the associated fields as needed. You will have four tables in the database and define the relationship between the primary key and foreign key. You will associate AuthorID (foreign key) field in the Title_Author table with AuthorID (primary key) in the Author table. Then, you want to associate the ISBN (foreign key) field in Title_Author table with ISBN (primary key) in the Title table.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 348
Book Description
In chapter one, you will learn to know the properties and events of each control in a Windows Visual C# application. You need to learn and know in order to be more familiar when applying them to some applications in this book. In chapter two, you will go through step by step to build a SALES database using MySQL. You will build each table and add associated data fields (along with the necessary keys and indexes). The first field in the Client table is ClientID. Enter the clien ID in the Name Field and select AutoNumber in the Data Type. You define primary key and other indexes which are useful for quick searching. ClientID is a primary field. You will define FamilyName as an index. You then will create Ordering table with three fields: OrderID, ClientID, and OrderDate. You then will create Purchase table with three fields: OrderID, ProductID, and Quantity. And you will create Product table with four fields: ProductID, Description, Price, and QtySold. Before designing Visual C# interface, you will build the relationships between four tables. The interface will be used to enter new orders into the database. The order form will be used to enter the following information into the database: order ID, order date, client ID, client’s first name and family name, client’s address, product information ordered. The form will have the ability to add new orders, find clients, add new clients. The completed order invoice will be provided in a printed report. In chapter three, you will build a database management system where you can store information about valuables in your warehouse. The table will have seven fields: Item (description of the item), Location (where the item was placed), Shop (where the item was purchased), DatePurchased (when the item was purchased), Cost (how much the item cost), SerialNumber (serial number of the item), PhotoFile (path of the photo file of the item), and Fragile (indicates whether a particular item is fragile or not). The development of this Warehouse Inventory Project will be performed, as usual, in a step-by-step manner. You will first create the database. Furthermore, the interface will be built so that the user can view, edit, add, or add data records from the database. Finally, you add code to create a printable list of information from the database. In chapter four, you will build an application that can be used to track daily high and low pollutant PM2.5 and air quality level. The steps that need to be taken in building Siantar Air Quality Index (SAQI) database project are: Build and test a Visual C# interface; Create an empty database using code; and Report database. The designed interface will allow the user to enter max pollutant, min pollutant, and air quality for any date that the user chooses in a particular year. This information will be stored in a database. Graphical result of the data will be provided, along with summary information relating to the maximum value, minimum value, and mean value. You will use a tab control as the main component of the interface. The control has three tabs: one for viewing and editing data, one for viewing graph of pollutant data, and another for viewing graph of air quality data. Each tab on this control operates like a Visual C# control panel. In chapter five, you will perform the steps necessary to build a MySQL book inventory database that contains 4 tables. You will build each table and add the associated fields as needed. You will have four tables in the database and define the relationship between the primary key and foreign key. You will associate AuthorID (foreign key) field in the Title_Author table with AuthorID (primary key) in the Author table. Then, you want to associate the ISBN (foreign key) field in Title_Author table with ISBN (primary key) in the Title table.
LEARN FROM SCRATCH MACHINE LEARNING WITH PYTHON GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 624
Book Description
In this book, you will learn how to use NumPy, Pandas, OpenCV, Scikit-Learn and other libraries to how to plot graph and to process digital image. Then, you will learn how to classify features using Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN) models. You will also learn how to extract features using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) algorithms and use them in machine learning. In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. You will also learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, Tutorial Steps To Implement Image Denoising, Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, Tutorial Steps To Extract Detected Objects, Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). In Chapter 4, In this tutorial, you will learn how to use Pandas, NumPy and other libraries to perform simple classification using perceptron and Adaline (adaptive linear neuron). The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron, Tutorial Steps To Implement Perceptron with PyQt, Tutorial Steps To Implement Adaline (ADAptive LInear NEuron), and Tutorial Steps To Implement Adaline with PyQt. In Chapter 5, you will learn how to use the scikit-learn machine learning library, which provides a wide variety of machine learning algorithms via a user-friendly Python API and to perform classification using perceptron, Adaline (adaptive linear neuron), and other models. The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron Using Scikit-Learn, Tutorial Steps To Implement Perceptron Using Scikit-Learn with PyQt, Tutorial Steps To Implement Logistic Regression Model, Tutorial Steps To Implement Logistic Regression Model with PyQt, Tutorial Steps To Implement Logistic Regression Model Using Scikit-Learn with PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Using Scikit-Learn, Tutorial Steps To Implement Decision Tree (DT) Using Scikit-Learn, Tutorial Steps To Implement Random Forest (RF) Using Scikit-Learn, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Using Scikit-Learn. In Chapter 6, you will learn how to use Pandas, NumPy, Scikit-Learn, and other libraries to implement different approaches for reducing the dimensionality of a dataset using different feature selection techniques. You will learn about three fundamental techniques that will help us to summarize the information content of a dataset by transforming it onto a new feature subspace of lower dimensionality than the original one. Data compression is an important topic in machine learning, and it helps us to store and analyze the increasing amounts of data that are produced and collected in the modern age of technology. You will learn the following topics: Principal Component Analysis (PCA) for unsupervised data compression, Linear Discriminant Analysis (LDA) as a supervised dimensionality reduction technique for maximizing class separability, Nonlinear dimensionality reduction via Kernel Principal Component Analysis (KPCA). You will learn: 6.1 Tutorial Steps To Implement Principal Component Analysis (PCA), Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn, Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Linear Discriminant Analysis (LDA), Tutorial Steps To Implement Linear Discriminant Analysis (LDA) with Scikit-Learn, Tutorial Steps To Implement Linear Discriminant Analysis (LDA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn, and Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn with PyQt. In Chapter 7, you will learn how to use Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. You will learn: Tutorial Steps To Load MNIST Dataset, Tutorial Steps To Load MNIST Dataset with PyQt, Tutorial Steps To Implement Perceptron With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement , Tutorial Steps To Implement Support Vector Machine (SVM) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 624
Book Description
In this book, you will learn how to use NumPy, Pandas, OpenCV, Scikit-Learn and other libraries to how to plot graph and to process digital image. Then, you will learn how to classify features using Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN) models. You will also learn how to extract features using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) algorithms and use them in machine learning. In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. You will also learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, Tutorial Steps To Implement Image Denoising, Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, Tutorial Steps To Extract Detected Objects, Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). In Chapter 4, In this tutorial, you will learn how to use Pandas, NumPy and other libraries to perform simple classification using perceptron and Adaline (adaptive linear neuron). The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron, Tutorial Steps To Implement Perceptron with PyQt, Tutorial Steps To Implement Adaline (ADAptive LInear NEuron), and Tutorial Steps To Implement Adaline with PyQt. In Chapter 5, you will learn how to use the scikit-learn machine learning library, which provides a wide variety of machine learning algorithms via a user-friendly Python API and to perform classification using perceptron, Adaline (adaptive linear neuron), and other models. The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron Using Scikit-Learn, Tutorial Steps To Implement Perceptron Using Scikit-Learn with PyQt, Tutorial Steps To Implement Logistic Regression Model, Tutorial Steps To Implement Logistic Regression Model with PyQt, Tutorial Steps To Implement Logistic Regression Model Using Scikit-Learn with PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Using Scikit-Learn, Tutorial Steps To Implement Decision Tree (DT) Using Scikit-Learn, Tutorial Steps To Implement Random Forest (RF) Using Scikit-Learn, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Using Scikit-Learn. In Chapter 6, you will learn how to use Pandas, NumPy, Scikit-Learn, and other libraries to implement different approaches for reducing the dimensionality of a dataset using different feature selection techniques. You will learn about three fundamental techniques that will help us to summarize the information content of a dataset by transforming it onto a new feature subspace of lower dimensionality than the original one. Data compression is an important topic in machine learning, and it helps us to store and analyze the increasing amounts of data that are produced and collected in the modern age of technology. You will learn the following topics: Principal Component Analysis (PCA) for unsupervised data compression, Linear Discriminant Analysis (LDA) as a supervised dimensionality reduction technique for maximizing class separability, Nonlinear dimensionality reduction via Kernel Principal Component Analysis (KPCA). You will learn: 6.1 Tutorial Steps To Implement Principal Component Analysis (PCA), Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn, Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Linear Discriminant Analysis (LDA), Tutorial Steps To Implement Linear Discriminant Analysis (LDA) with Scikit-Learn, Tutorial Steps To Implement Linear Discriminant Analysis (LDA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn, and Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn with PyQt. In Chapter 7, you will learn how to use Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. You will learn: Tutorial Steps To Load MNIST Dataset, Tutorial Steps To Load MNIST Dataset with PyQt, Tutorial Steps To Implement Perceptron With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement , Tutorial Steps To Implement Support Vector Machine (SVM) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt.
LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
In this book, you will learn how to use OpenCV, NumPy library and other libraries to perform signal processing, image processing, object detection, and feature extraction with Python GUI (PyQt). You will learn how to filter signals, detect edges and segments, and denoise images with PyQt. You will also learn how to detect objects (face, eye, and mouth) using Haar Cascades and how to detect features on images using Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), and Features from Accelerated Segment Test (FAST). In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. In Chapter 4, you will learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, and Tutorial Steps To Implement Image Denoising. In Chapter 5, you will learn: Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, and Tutorial Steps To Extract Detected Objects. In Chapter 6, you will learn: Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). You can download the XML files from https://viviansiahaan.blogspot.com/2023/06/learn-from-scratch-signal-and-image.html.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
In this book, you will learn how to use OpenCV, NumPy library and other libraries to perform signal processing, image processing, object detection, and feature extraction with Python GUI (PyQt). You will learn how to filter signals, detect edges and segments, and denoise images with PyQt. You will also learn how to detect objects (face, eye, and mouth) using Haar Cascades and how to detect features on images using Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), and Features from Accelerated Segment Test (FAST). In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. In Chapter 4, you will learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, and Tutorial Steps To Implement Image Denoising. In Chapter 5, you will learn: Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, and Tutorial Steps To Extract Detected Objects. In Chapter 6, you will learn: Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). You can download the XML files from https://viviansiahaan.blogspot.com/2023/06/learn-from-scratch-signal-and-image.html.
CRYPTOCURRENCY PRICE ANALYSIS, PREDICTION, AND FORECASTING USING MACHINE LEARNING WITH PYTHON
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 303
Book Description
In this project, we will be conducting a comprehensive analysis, prediction, and forecasting of cryptocurrency prices using machine learning with Python. The dataset we will be working with contains historical cryptocurrency price data, and our main objective is to build models that can accurately predict future price movements and daily returns. The first step of the project involves exploring the dataset to gain insights into the structure and contents of the data. We will examine the columns, data types, and any missing values present. After that, we will preprocess the data, handling any missing values and converting data types as needed. This will ensure that our data is clean and ready for analysis. Next, we will proceed with visualizing the dataset to understand the trends and patterns in cryptocurrency prices over time. We will create line plots, box plot, violin plot, and other visualizations to study price movements, trading volumes, and volatility across different cryptocurrencies. These visualizations will help us identify any apparent trends or seasonality in the data. To gain a deeper understanding of the time-series nature of the data, we will conduct time-series analysis year-wise and month-wise. This analysis will involve decomposing the time-series into its individual components like trend, seasonality, and noise. Additionally, we will look for patterns in price movements during specific months to identify any recurring seasonal effects. To enhance our predictions, we will also incorporate technical indicators into our analysis. Technical indicators, such as moving averages, Relative Strength Index (RSI), and Moving Average Convergence Divergence (MACD), provide valuable information about price momentum and market trends. These indicators can be used as additional features in our machine learning models. With a strong foundation of data exploration, visualization, and time-series analysis, we will now move on to building machine learning models for forecasting the closing price of cryptocurrencies. We will utilize algorithms like Linear Regression, Support Vector Regression, Random Forest Regression, Decision Tree Regression, K-Nearest Neighbors Regression, Adaboost Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, Catboost Regression, Multi-Layer Perceptron Regression, Lasso Regression, and Ridge Regression to make forecasting. By training our models on historical data, they will learn to recognize patterns and make predictions for future price movements. As part of our machine learning efforts, we will also develop models for predicting daily returns of cryptocurrencies. Daily returns are essential indicators for investors and traders, as they reflect the percentage change in price from one day to the next. By using historical price data and technical indicators as input features, we can build models that forecast daily returns accurately. Throughout the project, we will perform extensive hyperparameter tuning using techniques like Grid Search and Random Search. This will help us identify the best combinations of hyperparameters for each model, optimizing their performance. To validate the accuracy and robustness of our models, we will use various evaluation metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared. These metrics will provide insights into the model's ability to predict cryptocurrency prices accurately. In conclusion, this project on cryptocurrency price analysis, prediction, and forecasting is a comprehensive exploration of using machine learning with Python to analyze and predict cryptocurrency price movements. By leveraging data visualization, time-series analysis, technical indicators, and machine learning algorithms, we aim to build accurate and reliable models for predicting future price movements and daily returns. The project's outcomes will be valuable for investors, traders, and analysts looking to make informed decisions in the highly volatile and dynamic world of cryptocurrencies. Through rigorous evaluation and validation, we strive to create robust models that can contribute to a better understanding of cryptocurrency market dynamics and support data-driven decision-making.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 303
Book Description
In this project, we will be conducting a comprehensive analysis, prediction, and forecasting of cryptocurrency prices using machine learning with Python. The dataset we will be working with contains historical cryptocurrency price data, and our main objective is to build models that can accurately predict future price movements and daily returns. The first step of the project involves exploring the dataset to gain insights into the structure and contents of the data. We will examine the columns, data types, and any missing values present. After that, we will preprocess the data, handling any missing values and converting data types as needed. This will ensure that our data is clean and ready for analysis. Next, we will proceed with visualizing the dataset to understand the trends and patterns in cryptocurrency prices over time. We will create line plots, box plot, violin plot, and other visualizations to study price movements, trading volumes, and volatility across different cryptocurrencies. These visualizations will help us identify any apparent trends or seasonality in the data. To gain a deeper understanding of the time-series nature of the data, we will conduct time-series analysis year-wise and month-wise. This analysis will involve decomposing the time-series into its individual components like trend, seasonality, and noise. Additionally, we will look for patterns in price movements during specific months to identify any recurring seasonal effects. To enhance our predictions, we will also incorporate technical indicators into our analysis. Technical indicators, such as moving averages, Relative Strength Index (RSI), and Moving Average Convergence Divergence (MACD), provide valuable information about price momentum and market trends. These indicators can be used as additional features in our machine learning models. With a strong foundation of data exploration, visualization, and time-series analysis, we will now move on to building machine learning models for forecasting the closing price of cryptocurrencies. We will utilize algorithms like Linear Regression, Support Vector Regression, Random Forest Regression, Decision Tree Regression, K-Nearest Neighbors Regression, Adaboost Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, Catboost Regression, Multi-Layer Perceptron Regression, Lasso Regression, and Ridge Regression to make forecasting. By training our models on historical data, they will learn to recognize patterns and make predictions for future price movements. As part of our machine learning efforts, we will also develop models for predicting daily returns of cryptocurrencies. Daily returns are essential indicators for investors and traders, as they reflect the percentage change in price from one day to the next. By using historical price data and technical indicators as input features, we can build models that forecast daily returns accurately. Throughout the project, we will perform extensive hyperparameter tuning using techniques like Grid Search and Random Search. This will help us identify the best combinations of hyperparameters for each model, optimizing their performance. To validate the accuracy and robustness of our models, we will use various evaluation metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared. These metrics will provide insights into the model's ability to predict cryptocurrency prices accurately. In conclusion, this project on cryptocurrency price analysis, prediction, and forecasting is a comprehensive exploration of using machine learning with Python to analyze and predict cryptocurrency price movements. By leveraging data visualization, time-series analysis, technical indicators, and machine learning algorithms, we aim to build accurate and reliable models for predicting future price movements and daily returns. The project's outcomes will be valuable for investors, traders, and analysts looking to make informed decisions in the highly volatile and dynamic world of cryptocurrencies. Through rigorous evaluation and validation, we strive to create robust models that can contribute to a better understanding of cryptocurrency market dynamics and support data-driven decision-making.
COMPANY BANKRUPTCY ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 335
Book Description
In this comprehensive project titled "Company Bankruptcy Analysis and Prediction Using Machine Learning with Python GUI," we embarked on a journey to explore, analyze, and predict the bankruptcy status of companies. Our project began with an exploration of the dataset, which involved importing it using Pandas and refining it by removing leading spaces and replacing spaces with underscores in column names to ensure consistency. To grasp the dataset's characteristics, we delved into categorized features' distributions, allowing us to understand the underlying patterns within the data. This step helped us gain insights into the distribution of attributes across different classes, aiding in feature selection and engineering. Moving on to the heart of our project, the prediction of company bankruptcy, we employed various machine learning models. Utilizing grid search, we performed hyperparameter tuning to optimize model performance. Our model arsenal included Logistic Regression, K-Nearest Neighbors, Support Vector, Decision Trees, Random Forests, Gradient Boosting, AdaBoost, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP), which were evaluated using accuracy, precision, recall, and F1-score. Transitioning to deep learning, we implemented an Artificial Neural Network (ANN) model. This involved constructing a feed-forward neural network with hidden layers, dropouts, and activation functions. We evaluated the ANN using accuracy, precision, recall, and F1-score, gaining a comprehensive understanding of its classification performance. Our journey into deep learning continued with the implementation of Long Short-Term Memory (LSTM) networks, which are well-suited for sequence data. We structured the LSTM model with multiple layers and dropouts, evaluating its performance using metrics like accuracy, precision, recall, and F1-score. This marked a pivotal step in predicting company bankruptcy. Furthermore, we explored Feed-Forward Neural Networks (FNN) for prediction. Constructing a multi-layered architecture with varied dropouts and activation functions, we assessed its classification capabilities using metrics similar to previous models. Incorporating Recurrent Neural Networks (RNN) added another dimension to our analysis. Building an RNN model with sequential data, we examined its accuracy, precision, recall, and F1-score, highlighting its ability to capture sequential patterns in bankruptcy data. To comprehensively evaluate our models, we employed a range of metrics including precision, recall, F1-score, and accuracy. These metrics enabled us to gauge not only the overall model performance but also its capability to correctly predict bankrupt and non-bankrupt cases. Our project also extended into creating a Python GUI using PyQt. This graphical interface facilitated user interaction, allowing them to input data for prediction and view the outcomes through an intuitive interface. This GUI enhanced accessibility and usability, making it easier for users to engage with our models. In conclusion, our journey through the "Company Bankruptcy Analysis and Prediction Using Machine Learning with Python GUI" project encompassed data exploration, categorized features distribution analysis, model selection, performance evaluation using diverse metrics, and the creation of an interactive GUI. This endeavor combined analytical rigor, machine learning expertise, and user-centric design to provide a comprehensive solution for predicting company bankruptcy.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 335
Book Description
In this comprehensive project titled "Company Bankruptcy Analysis and Prediction Using Machine Learning with Python GUI," we embarked on a journey to explore, analyze, and predict the bankruptcy status of companies. Our project began with an exploration of the dataset, which involved importing it using Pandas and refining it by removing leading spaces and replacing spaces with underscores in column names to ensure consistency. To grasp the dataset's characteristics, we delved into categorized features' distributions, allowing us to understand the underlying patterns within the data. This step helped us gain insights into the distribution of attributes across different classes, aiding in feature selection and engineering. Moving on to the heart of our project, the prediction of company bankruptcy, we employed various machine learning models. Utilizing grid search, we performed hyperparameter tuning to optimize model performance. Our model arsenal included Logistic Regression, K-Nearest Neighbors, Support Vector, Decision Trees, Random Forests, Gradient Boosting, AdaBoost, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP), which were evaluated using accuracy, precision, recall, and F1-score. Transitioning to deep learning, we implemented an Artificial Neural Network (ANN) model. This involved constructing a feed-forward neural network with hidden layers, dropouts, and activation functions. We evaluated the ANN using accuracy, precision, recall, and F1-score, gaining a comprehensive understanding of its classification performance. Our journey into deep learning continued with the implementation of Long Short-Term Memory (LSTM) networks, which are well-suited for sequence data. We structured the LSTM model with multiple layers and dropouts, evaluating its performance using metrics like accuracy, precision, recall, and F1-score. This marked a pivotal step in predicting company bankruptcy. Furthermore, we explored Feed-Forward Neural Networks (FNN) for prediction. Constructing a multi-layered architecture with varied dropouts and activation functions, we assessed its classification capabilities using metrics similar to previous models. Incorporating Recurrent Neural Networks (RNN) added another dimension to our analysis. Building an RNN model with sequential data, we examined its accuracy, precision, recall, and F1-score, highlighting its ability to capture sequential patterns in bankruptcy data. To comprehensively evaluate our models, we employed a range of metrics including precision, recall, F1-score, and accuracy. These metrics enabled us to gauge not only the overall model performance but also its capability to correctly predict bankrupt and non-bankrupt cases. Our project also extended into creating a Python GUI using PyQt. This graphical interface facilitated user interaction, allowing them to input data for prediction and view the outcomes through an intuitive interface. This GUI enhanced accessibility and usability, making it easier for users to engage with our models. In conclusion, our journey through the "Company Bankruptcy Analysis and Prediction Using Machine Learning with Python GUI" project encompassed data exploration, categorized features distribution analysis, model selection, performance evaluation using diverse metrics, and the creation of an interactive GUI. This endeavor combined analytical rigor, machine learning expertise, and user-centric design to provide a comprehensive solution for predicting company bankruptcy.
DATA SCIENCE WORKSHOP: Cervical Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 348
Book Description
This book titled " Data Science Workshop: Cervical Cancer Classification and Prediction using Machine Learning and Deep Learning with Python GUI" embarks on an insightful journey starting with an in-depth exploration of the dataset. This dataset encompasses various features that shed light on patients' medical histories and attributes. Utilizing the capabilities of pandas, the dataset is loaded, and essential details like data dimensions, column names, and data types are scrutinized. The presence of missing data is addressed by employing suitable strategies such as mean-based imputation for numerical features and categorical encoding for non-numeric ones. Subsequently, the project delves into an illuminating visualization of categorized feature distributions. Through the ingenious use of pie charts, bar plots, and heatmaps, the project unveils the distribution patterns of key attributes such as 'Hormonal Contraceptives,' 'Smokes,' 'IUD,' and others. These visualizations illuminate potential relationships between these features and the target variable 'Biopsy,' which signifies the presence or absence of cervical cancer. Such exploratory analyses serve as a vital foundation for identifying influential trends within the dataset. Transitioning into the core phase of predictive modeling, the workshop orchestrates a meticulous ensemble of machine learning models to forecast cervical cancer outcomes. The repertoire includes Logistic Regression, Decision Trees, Random Forests, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Gradient Boosting, Naïve Bayes, and the power of ensemble methods like AdaBoost and XGBoost. The models undergo rigorous hyperparameter tuning facilitated by Grid Search and Random Search to optimize predictive accuracy and precision. As the workshop progresses, the spotlight shifts to the realm of deep learning, introducing advanced neural network architectures. An Artificial Neural Network (ANN) featuring multiple hidden layers is trained using the backpropagation algorithm. Long Short-Term Memory (LSTM) networks are harnessed to capture intricate temporal relationships within the data. The arsenal extends to include Self Organizing Maps (SOMs), Restricted Boltzmann Machines (RBMs), and Autoencoders, showcasing the efficacy of unsupervised feature learning and dimensionality reduction techniques. The evaluation phase emerges as a pivotal aspect, accentuated by an array of comprehensive metrics. Performance assessment encompasses metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. Cross-validation and learning curves are strategically employed to mitigate overfitting and ensure model generalization. Furthermore, visual aids such as ROC curves and confusion matrices provide a lucid depiction of the models' interplay between sensitivity and specificity. Culminating on a high note, the workshop concludes with the creation of a Python GUI utilizing PyQt. This intuitive graphical user interface empowers users to input pertinent medical data and receive instant predictions regarding their cervical cancer risk. Seamlessly integrating the most proficient classification model, this user-friendly interface bridges the gap between sophisticated data science techniques and practical healthcare applications. In this comprehensive workshop, participants navigate through the intricate landscape of data exploration, preprocessing, feature visualization, predictive modeling encompassing both traditional and deep learning paradigms, robust performance evaluation, and culminating in the development of an accessible and informative GUI. The project aspires to provide healthcare professionals and individuals with a potent tool for early cervical cancer detection and prognosis.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 348
Book Description
This book titled " Data Science Workshop: Cervical Cancer Classification and Prediction using Machine Learning and Deep Learning with Python GUI" embarks on an insightful journey starting with an in-depth exploration of the dataset. This dataset encompasses various features that shed light on patients' medical histories and attributes. Utilizing the capabilities of pandas, the dataset is loaded, and essential details like data dimensions, column names, and data types are scrutinized. The presence of missing data is addressed by employing suitable strategies such as mean-based imputation for numerical features and categorical encoding for non-numeric ones. Subsequently, the project delves into an illuminating visualization of categorized feature distributions. Through the ingenious use of pie charts, bar plots, and heatmaps, the project unveils the distribution patterns of key attributes such as 'Hormonal Contraceptives,' 'Smokes,' 'IUD,' and others. These visualizations illuminate potential relationships between these features and the target variable 'Biopsy,' which signifies the presence or absence of cervical cancer. Such exploratory analyses serve as a vital foundation for identifying influential trends within the dataset. Transitioning into the core phase of predictive modeling, the workshop orchestrates a meticulous ensemble of machine learning models to forecast cervical cancer outcomes. The repertoire includes Logistic Regression, Decision Trees, Random Forests, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Gradient Boosting, Naïve Bayes, and the power of ensemble methods like AdaBoost and XGBoost. The models undergo rigorous hyperparameter tuning facilitated by Grid Search and Random Search to optimize predictive accuracy and precision. As the workshop progresses, the spotlight shifts to the realm of deep learning, introducing advanced neural network architectures. An Artificial Neural Network (ANN) featuring multiple hidden layers is trained using the backpropagation algorithm. Long Short-Term Memory (LSTM) networks are harnessed to capture intricate temporal relationships within the data. The arsenal extends to include Self Organizing Maps (SOMs), Restricted Boltzmann Machines (RBMs), and Autoencoders, showcasing the efficacy of unsupervised feature learning and dimensionality reduction techniques. The evaluation phase emerges as a pivotal aspect, accentuated by an array of comprehensive metrics. Performance assessment encompasses metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. Cross-validation and learning curves are strategically employed to mitigate overfitting and ensure model generalization. Furthermore, visual aids such as ROC curves and confusion matrices provide a lucid depiction of the models' interplay between sensitivity and specificity. Culminating on a high note, the workshop concludes with the creation of a Python GUI utilizing PyQt. This intuitive graphical user interface empowers users to input pertinent medical data and receive instant predictions regarding their cervical cancer risk. Seamlessly integrating the most proficient classification model, this user-friendly interface bridges the gap between sophisticated data science techniques and practical healthcare applications. In this comprehensive workshop, participants navigate through the intricate landscape of data exploration, preprocessing, feature visualization, predictive modeling encompassing both traditional and deep learning paradigms, robust performance evaluation, and culminating in the development of an accessible and informative GUI. The project aspires to provide healthcare professionals and individuals with a potent tool for early cervical cancer detection and prognosis.
DATA SCIENCE WORKSHOP: Chronic Kidney Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 361
Book Description
In the captivating journey of our data science workshop, we embarked on the exploration of Chronic Kidney Disease classification and prediction. Our quest began with a thorough dive into data exploration, where we meticulously delved into the dataset's intricacies to unearth hidden patterns and insights. We analyzed the distribution of categorized features, unraveling the nuances that underlie chronic kidney disease. Guided by the principles of machine learning, we embarked on the quest to build predictive models. With the aid of grid search, we fine-tuned our machine learning algorithms, optimizing their hyperparameters for peak performance. Each model, whether K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Naive Bayes, Extreme Gradient Boosting, Light Gradient Boosting, or Multi-Layer Perceptron, was meticulously trained and tested, paving the way for robust predictions. The voyage into the realm of deep learning took us further, as we harnessed the power of Artificial Neural Networks (ANNs). By constructing intricate architectures, we designed ANNs to discern intricate patterns from the data. Leveraging the prowess of TensorFlow, we artfully crafted layers, each contributing to the ANN's comprehension of the underlying dynamics. This marked our initial foray into the world of deep learning. Our expedition, however, did not conclude with ANNs. We ventured deeper into the abyss of deep learning, uncovering the potential of Long Short-Term Memory (LSTM) networks. These networks, attuned to sequential data, unraveled temporal dependencies within the dataset, fortifying our predictive capabilities. Diving even further, we encountered Self-Organizing Maps (SOMs) and Restricted Boltzmann Machines (RBMs). These innovative models, rooted in unsupervised learning, unmasked underlying structures in the dataset. As our understanding of the data deepened, so did our repertoire of tools for prediction. Autoencoders, our final frontier in deep learning, emerged as our champions in dimensionality reduction and feature learning. These unsupervised neural networks transformed complex data into compact, meaningful representations, guiding our predictive models with newfound efficiency. To furnish a granular understanding of model behavior, we employed the classification report, which delineated precision, recall, and F1-Score for each class, providing a comprehensive snapshot of the model's predictive capacity across diverse categories. The confusion matrix emerged as a tangible visualization, detailing the interplay between true positives, true negatives, false positives, and false negatives. We also harnessed ROC and precision-recall curves to illuminate the dynamic interplay between true positive rate and false positive rate, vital when tackling imbalanced datasets. For regression tasks, MSE and its counterpart RMSE quantified the average squared differences between predictions and actual values, facilitating an insightful assessment of model fit. Further enhancing our toolkit, the R-squared (R2) score unveiled the extent to which the model explained variance in the dependent variable, offering a valuable gauge of overall performance. Collectively, this ensemble of metrics enabled us to make astute model decisions, optimize hyperparameters, and gauge the models' fitness for accurate disease prognosis in a clinical context. Amidst this whirlwind of data exploration and model construction, our GUI using PyQt emerged as a beacon of user-friendly interaction. Through its intuitive interface, users navigated seamlessly between model selection, training, and prediction. Our GUI encapsulated the intricacies of our journey, bridging the gap between data science and user experience. In the end, our odyssey illuminated the intricate landscape of Chronic Kidney Disease classification and prediction. We harnessed the power of both machine learning and deep learning, uncovering hidden insights and propelling our predictive capabilities to new heights. Our journey transcended the realms of data, algorithms, and interfaces, leaving an indelible mark on the crossroads of science and innovation.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 361
Book Description
In the captivating journey of our data science workshop, we embarked on the exploration of Chronic Kidney Disease classification and prediction. Our quest began with a thorough dive into data exploration, where we meticulously delved into the dataset's intricacies to unearth hidden patterns and insights. We analyzed the distribution of categorized features, unraveling the nuances that underlie chronic kidney disease. Guided by the principles of machine learning, we embarked on the quest to build predictive models. With the aid of grid search, we fine-tuned our machine learning algorithms, optimizing their hyperparameters for peak performance. Each model, whether K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Naive Bayes, Extreme Gradient Boosting, Light Gradient Boosting, or Multi-Layer Perceptron, was meticulously trained and tested, paving the way for robust predictions. The voyage into the realm of deep learning took us further, as we harnessed the power of Artificial Neural Networks (ANNs). By constructing intricate architectures, we designed ANNs to discern intricate patterns from the data. Leveraging the prowess of TensorFlow, we artfully crafted layers, each contributing to the ANN's comprehension of the underlying dynamics. This marked our initial foray into the world of deep learning. Our expedition, however, did not conclude with ANNs. We ventured deeper into the abyss of deep learning, uncovering the potential of Long Short-Term Memory (LSTM) networks. These networks, attuned to sequential data, unraveled temporal dependencies within the dataset, fortifying our predictive capabilities. Diving even further, we encountered Self-Organizing Maps (SOMs) and Restricted Boltzmann Machines (RBMs). These innovative models, rooted in unsupervised learning, unmasked underlying structures in the dataset. As our understanding of the data deepened, so did our repertoire of tools for prediction. Autoencoders, our final frontier in deep learning, emerged as our champions in dimensionality reduction and feature learning. These unsupervised neural networks transformed complex data into compact, meaningful representations, guiding our predictive models with newfound efficiency. To furnish a granular understanding of model behavior, we employed the classification report, which delineated precision, recall, and F1-Score for each class, providing a comprehensive snapshot of the model's predictive capacity across diverse categories. The confusion matrix emerged as a tangible visualization, detailing the interplay between true positives, true negatives, false positives, and false negatives. We also harnessed ROC and precision-recall curves to illuminate the dynamic interplay between true positive rate and false positive rate, vital when tackling imbalanced datasets. For regression tasks, MSE and its counterpart RMSE quantified the average squared differences between predictions and actual values, facilitating an insightful assessment of model fit. Further enhancing our toolkit, the R-squared (R2) score unveiled the extent to which the model explained variance in the dependent variable, offering a valuable gauge of overall performance. Collectively, this ensemble of metrics enabled us to make astute model decisions, optimize hyperparameters, and gauge the models' fitness for accurate disease prognosis in a clinical context. Amidst this whirlwind of data exploration and model construction, our GUI using PyQt emerged as a beacon of user-friendly interaction. Through its intuitive interface, users navigated seamlessly between model selection, training, and prediction. Our GUI encapsulated the intricacies of our journey, bridging the gap between data science and user experience. In the end, our odyssey illuminated the intricate landscape of Chronic Kidney Disease classification and prediction. We harnessed the power of both machine learning and deep learning, uncovering hidden insights and propelling our predictive capabilities to new heights. Our journey transcended the realms of data, algorithms, and interfaces, leaving an indelible mark on the crossroads of science and innovation.
DATA SCIENCE CRASH COURSE: Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 412
Book Description
Thyroid disease is a prevalent condition that affects the thyroid gland, leading to various health issues. In this session of the Data Science Crash Course, we will explore the classification and prediction of thyroid disease using machine learning and deep learning techniques, all implemented with the power of Python and a user-friendly GUI built with PyQt. We will start by conducting data exploration on a comprehensive dataset containing relevant features and thyroid disease labels. Through analysis and pattern recognition, we will gain insights into the underlying factors contributing to thyroid disease. Next, we will delve into the machine learning phase, where we will implement popular algorithms including Support Vector, Logistic Regression, K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient Boosting, Light Gradient Boosting, Naive Bayes, Adaboost, Extreme Gradient Boosting, and Multi-Layer Perceptron. These models will be trained using different preprocessing techniques, including raw data, normalization, and standardization, to evaluate their performance and accuracy. We train each model on the training dataset and evaluate its performance using appropriate metrics such as accuracy, precision, recall, and F1-score. This helps us assess how well the models can predict stroke based on the given features. To optimize the models' performance, we perform hyperparameter tuning using techniques like grid search or randomized search. This involves systematically exploring different combinations of hyperparameters to find the best configuration for each model. After training and tuning the models, we save them to disk using joblib. This allows us to reuse the trained models for future predictions without having to train them again. Moving beyond traditional machine learning, we will build an artificial neural network (ANN) using TensorFlow. This ANN will capture complex relationships within the data and provide accurate predictions of thyroid disease. To ensure the effectiveness of our ANN, we will train it using a curated dataset split into training and testing sets. This will allow us to evaluate the model's performance and its ability to generalize predictions. To provide an interactive and user-friendly experience, we will develop a Graphical User Interface (GUI) using PyQt. The GUI will allow users to input data, select prediction methods (machine learning or deep learning), and visualize the results. Through the GUI, users can explore different prediction methods, compare performance, and gain insights into thyroid disease classification. Visualizations of training and validation loss, accuracy, and confusion matrices will enhance understanding and model evaluation. Line plots comparing true values and predicted values will further aid interpretation and insights into classification outcomes. Throughout the project, we will emphasize the importance of preprocessing techniques, feature selection, and model evaluation in building reliable and effective thyroid disease classification and prediction models. By the end of the project, readers will have gained practical knowledge in data exploration, machine learning, deep learning, and GUI development. They will be equipped to apply these techniques to other domains and real-world challenges. The project’s comprehensive approach, from data exploration to model development and GUI implementation, ensures a holistic understanding of thyroid disease classification and prediction. It empowers readers to explore applications of data science in healthcare and beyond. The combination of machine learning and deep learning techniques, coupled with the intuitive GUI, offers a powerful framework for thyroid disease classification and prediction. This project serves as a stepping stone for readers to contribute to the field of medical data science. Data-driven approaches in healthcare have the potential to unlock valuable insights and improve outcomes. The focus on thyroid disease classification and prediction in this session showcases the transformative impact of data science in the medical field. Together, let us embark on this journey to advance our understanding of thyroid disease and make a difference in the lives of individuals affected by this condition. Welcome to the Data Science Crash Course on Thyroid Disease Classification and Prediction!
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 412
Book Description
Thyroid disease is a prevalent condition that affects the thyroid gland, leading to various health issues. In this session of the Data Science Crash Course, we will explore the classification and prediction of thyroid disease using machine learning and deep learning techniques, all implemented with the power of Python and a user-friendly GUI built with PyQt. We will start by conducting data exploration on a comprehensive dataset containing relevant features and thyroid disease labels. Through analysis and pattern recognition, we will gain insights into the underlying factors contributing to thyroid disease. Next, we will delve into the machine learning phase, where we will implement popular algorithms including Support Vector, Logistic Regression, K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient Boosting, Light Gradient Boosting, Naive Bayes, Adaboost, Extreme Gradient Boosting, and Multi-Layer Perceptron. These models will be trained using different preprocessing techniques, including raw data, normalization, and standardization, to evaluate their performance and accuracy. We train each model on the training dataset and evaluate its performance using appropriate metrics such as accuracy, precision, recall, and F1-score. This helps us assess how well the models can predict stroke based on the given features. To optimize the models' performance, we perform hyperparameter tuning using techniques like grid search or randomized search. This involves systematically exploring different combinations of hyperparameters to find the best configuration for each model. After training and tuning the models, we save them to disk using joblib. This allows us to reuse the trained models for future predictions without having to train them again. Moving beyond traditional machine learning, we will build an artificial neural network (ANN) using TensorFlow. This ANN will capture complex relationships within the data and provide accurate predictions of thyroid disease. To ensure the effectiveness of our ANN, we will train it using a curated dataset split into training and testing sets. This will allow us to evaluate the model's performance and its ability to generalize predictions. To provide an interactive and user-friendly experience, we will develop a Graphical User Interface (GUI) using PyQt. The GUI will allow users to input data, select prediction methods (machine learning or deep learning), and visualize the results. Through the GUI, users can explore different prediction methods, compare performance, and gain insights into thyroid disease classification. Visualizations of training and validation loss, accuracy, and confusion matrices will enhance understanding and model evaluation. Line plots comparing true values and predicted values will further aid interpretation and insights into classification outcomes. Throughout the project, we will emphasize the importance of preprocessing techniques, feature selection, and model evaluation in building reliable and effective thyroid disease classification and prediction models. By the end of the project, readers will have gained practical knowledge in data exploration, machine learning, deep learning, and GUI development. They will be equipped to apply these techniques to other domains and real-world challenges. The project’s comprehensive approach, from data exploration to model development and GUI implementation, ensures a holistic understanding of thyroid disease classification and prediction. It empowers readers to explore applications of data science in healthcare and beyond. The combination of machine learning and deep learning techniques, coupled with the intuitive GUI, offers a powerful framework for thyroid disease classification and prediction. This project serves as a stepping stone for readers to contribute to the field of medical data science. Data-driven approaches in healthcare have the potential to unlock valuable insights and improve outcomes. The focus on thyroid disease classification and prediction in this session showcases the transformative impact of data science in the medical field. Together, let us embark on this journey to advance our understanding of thyroid disease and make a difference in the lives of individuals affected by this condition. Welcome to the Data Science Crash Course on Thyroid Disease Classification and Prediction!
BANK LOAN STATUS CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 394
Book Description
The project "Bank Loan Status Classification and Prediction Using Machine Learning with Python GUI" begins with data exploration, where the dataset containing information about bank loan applicants is analyzed. The data is examined to understand its structure, check for missing values, and gain insights into the distribution of features. Exploratory data analysis techniques are used to visualize the distribution of loan statuses, such as approved and rejected loans, and the distribution of various features like credit score, number of open accounts, and annual income. After data exploration, the preprocessing stage begins, where data cleaning and feature engineering techniques are applied. Missing values are imputed or removed, and categorical variables are encoded to numerical form for model compatibility. The dataset is split into training and testing sets to prepare for the machine learning model's training and evaluation process. Three preprocessing methods are used: raw data, normalization, and standardization. The machine learning process involves training several classifiers on the preprocessed data. Logistic Regression, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient Boosting, Naive Bayes, Adaboost, XGBoost, and LightGBM classifiers are considered. Each classifier is trained using the training data and evaluated using performance metrics such as accuracy, precision, recall, and F1-score on the testing data. To enhance model performance, hyperparameter tuning is performed using Grid Search with cross-validation. Grid Search explores different combinations of hyperparameters for each model, seeking the optimal configuration that yields the best performance. This step helps to find the most suitable hyperparameters for each classifier, improving their predictive capabilities. The implementation of a graphical user interface (GUI) using PyQt comes next. The GUI allows users to interact with the trained machine learning models easily. Users can select their preferred preprocessing method and classifier from the available options. The GUI provides visualizations of the models' performance, including confusion matrices, real vs. predicted value plots, learning curves, scalability curves, and performance curves. Users can examine the decision boundaries of the classifiers for different features to gain insights into their behavior. The application of the GUI is intuitive and user-friendly. Users can visualize the results of different models, compare their performance, and choose the most suitable classifier based on their preferences and requirements. The GUI allows users to assess the performance of each classifier on the test dataset, providing a clear understanding of their strengths and weaknesses. The project fosters transparency and reproducibility by saving the trained machine learning models using joblib's pickle functionality. This enables users to load and use pre-trained models in the future without retraining, saving time and resources. Throughout the project, the team pays close attention to data handling and model evaluation, ensuring that no data leakage occurs and the models are well-evaluated using appropriate evaluation metrics. The GUI is designed to present results in a visually appealing and informative manner, making it accessible to both technical and non-technical users. The project's effectiveness is validated by its ability to accurately predict the loan status of bank applicants based on various features. It demonstrates how machine learning techniques can aid in decision-making processes, such as loan approval or rejection, in financial institutions. Overall, the "Bank Loan Status Classification and Prediction Using Machine Learning with Python GUI" project combines data exploration, feature preprocessing, model training, hyperparameter tuning, and GUI implementation to create a user-friendly application for loan status prediction. The project empowers users with valuable insights into the loan application process, supporting banks and financial institutions in making informed decisions and improving customer experience.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 394
Book Description
The project "Bank Loan Status Classification and Prediction Using Machine Learning with Python GUI" begins with data exploration, where the dataset containing information about bank loan applicants is analyzed. The data is examined to understand its structure, check for missing values, and gain insights into the distribution of features. Exploratory data analysis techniques are used to visualize the distribution of loan statuses, such as approved and rejected loans, and the distribution of various features like credit score, number of open accounts, and annual income. After data exploration, the preprocessing stage begins, where data cleaning and feature engineering techniques are applied. Missing values are imputed or removed, and categorical variables are encoded to numerical form for model compatibility. The dataset is split into training and testing sets to prepare for the machine learning model's training and evaluation process. Three preprocessing methods are used: raw data, normalization, and standardization. The machine learning process involves training several classifiers on the preprocessed data. Logistic Regression, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient Boosting, Naive Bayes, Adaboost, XGBoost, and LightGBM classifiers are considered. Each classifier is trained using the training data and evaluated using performance metrics such as accuracy, precision, recall, and F1-score on the testing data. To enhance model performance, hyperparameter tuning is performed using Grid Search with cross-validation. Grid Search explores different combinations of hyperparameters for each model, seeking the optimal configuration that yields the best performance. This step helps to find the most suitable hyperparameters for each classifier, improving their predictive capabilities. The implementation of a graphical user interface (GUI) using PyQt comes next. The GUI allows users to interact with the trained machine learning models easily. Users can select their preferred preprocessing method and classifier from the available options. The GUI provides visualizations of the models' performance, including confusion matrices, real vs. predicted value plots, learning curves, scalability curves, and performance curves. Users can examine the decision boundaries of the classifiers for different features to gain insights into their behavior. The application of the GUI is intuitive and user-friendly. Users can visualize the results of different models, compare their performance, and choose the most suitable classifier based on their preferences and requirements. The GUI allows users to assess the performance of each classifier on the test dataset, providing a clear understanding of their strengths and weaknesses. The project fosters transparency and reproducibility by saving the trained machine learning models using joblib's pickle functionality. This enables users to load and use pre-trained models in the future without retraining, saving time and resources. Throughout the project, the team pays close attention to data handling and model evaluation, ensuring that no data leakage occurs and the models are well-evaluated using appropriate evaluation metrics. The GUI is designed to present results in a visually appealing and informative manner, making it accessible to both technical and non-technical users. The project's effectiveness is validated by its ability to accurately predict the loan status of bank applicants based on various features. It demonstrates how machine learning techniques can aid in decision-making processes, such as loan approval or rejection, in financial institutions. Overall, the "Bank Loan Status Classification and Prediction Using Machine Learning with Python GUI" project combines data exploration, feature preprocessing, model training, hyperparameter tuning, and GUI implementation to create a user-friendly application for loan status prediction. The project empowers users with valuable insights into the loan application process, supporting banks and financial institutions in making informed decisions and improving customer experience.
TIME-SERIES ANALYSIS: FORECASTING STOCK PRICE USING MACHINE LEARNING WITH PYTHON GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 463
Book Description
Stock trading and financial instrument markets offer significant opportunities for wealth creation. The ability to predict stock price movements has long intrigued researchers and investors alike. While some theories, like the Efficient Market Hypothesis, suggest that consistently beating the market is nearly impossible, others contest this viewpoint. Stock price prediction involves forecasting the future value of a given stock. In this project, we focus on the S&P 500 Index, which consists of 500 stocks from various sectors of the US economy and serves as a key indicator of US equities. To tackle this task, we utilize the Yahoo stock price history dataset, which contains 1825 rows and 7 columns including Date, High, Low, Open, Close, Volume, and Adj Close. To enhance our predictions, we incorporate technical indicators such as daily returns, Moving Average Convergence-Divergence (MACD), Relative Strength Index (RSI), Simple Moving Average (SMA), lower and upper bands, and standard deviation. In this book, for the forecasting task, we employ various regression algorithms including Linear Regression, Random Forest Regression, Decision Tree Regression, Support Vector Regression, Naïve Bayes Regression, K-Nearest Neighbor Regression, Adaboost Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, Catboost Regression, MLP Regression, Lasso Regression, and Ridge Regression. These models aim to predict the future Adj Close price of the stock based on historical data. In addition to stock price prediction, we also delve into predicting stock daily returns using machine learning models. We utilize K-Nearest Neighbor Classifier, Random Forest Classifier, Naive Bayes Classifier, Logistic Regression Classifier, Decision Tree Classifier, Support Vector Machine Classifier, LGBM Classifier, Gradient Boosting Classifier, XGB Classifier, MLP Classifier, and Extra Trees Classifier. These models are trained to predict the direction of daily stock returns (positive or negative) based on various features and technical indicators. To assess the performance of these machine learning models, we evaluate several important metrics. Accuracy measures the overall correctness of the predictions, while recall quantifies the ability to correctly identify positive cases (upward daily returns). Precision evaluates the precision of positive predictions, and the F1 score provides a balanced measure of precision and recall. Additionally, we consider macro average, which calculates the average metric value across all classes, and weighted average, which provides a balanced representation considering class imbalances. To enhance the user experience and facilitate data exploration, we develop a graphical user interface (GUI). The GUI is built using PyQt and offers an interactive platform for users to visualize and interact with the data. It provides features such as plotting boundary decisions, visualizing feature distributions and importance, comparing predicted values with true values, displaying confusion matrices, learning curves, model performance, and scalability analysis. The GUI allows users to customize the analysis by selecting different models, time periods, or variables of interest, making it accessible and user-friendly for individuals without extensive programming knowledge. The combination of exploring the dataset, forecasting stock prices, predicting daily returns, and developing a GUI creates a comprehensive framework for analyzing and understanding stock market trends. By leveraging machine learning algorithms and evaluating performance metrics, we gain valuable insights into the accuracy and effectiveness of our predictions. The GUI further enhances the accessibility and usability of the analysis, enabling users to make data-driven decisions and explore the stock market with ease.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 463
Book Description
Stock trading and financial instrument markets offer significant opportunities for wealth creation. The ability to predict stock price movements has long intrigued researchers and investors alike. While some theories, like the Efficient Market Hypothesis, suggest that consistently beating the market is nearly impossible, others contest this viewpoint. Stock price prediction involves forecasting the future value of a given stock. In this project, we focus on the S&P 500 Index, which consists of 500 stocks from various sectors of the US economy and serves as a key indicator of US equities. To tackle this task, we utilize the Yahoo stock price history dataset, which contains 1825 rows and 7 columns including Date, High, Low, Open, Close, Volume, and Adj Close. To enhance our predictions, we incorporate technical indicators such as daily returns, Moving Average Convergence-Divergence (MACD), Relative Strength Index (RSI), Simple Moving Average (SMA), lower and upper bands, and standard deviation. In this book, for the forecasting task, we employ various regression algorithms including Linear Regression, Random Forest Regression, Decision Tree Regression, Support Vector Regression, Naïve Bayes Regression, K-Nearest Neighbor Regression, Adaboost Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, Catboost Regression, MLP Regression, Lasso Regression, and Ridge Regression. These models aim to predict the future Adj Close price of the stock based on historical data. In addition to stock price prediction, we also delve into predicting stock daily returns using machine learning models. We utilize K-Nearest Neighbor Classifier, Random Forest Classifier, Naive Bayes Classifier, Logistic Regression Classifier, Decision Tree Classifier, Support Vector Machine Classifier, LGBM Classifier, Gradient Boosting Classifier, XGB Classifier, MLP Classifier, and Extra Trees Classifier. These models are trained to predict the direction of daily stock returns (positive or negative) based on various features and technical indicators. To assess the performance of these machine learning models, we evaluate several important metrics. Accuracy measures the overall correctness of the predictions, while recall quantifies the ability to correctly identify positive cases (upward daily returns). Precision evaluates the precision of positive predictions, and the F1 score provides a balanced measure of precision and recall. Additionally, we consider macro average, which calculates the average metric value across all classes, and weighted average, which provides a balanced representation considering class imbalances. To enhance the user experience and facilitate data exploration, we develop a graphical user interface (GUI). The GUI is built using PyQt and offers an interactive platform for users to visualize and interact with the data. It provides features such as plotting boundary decisions, visualizing feature distributions and importance, comparing predicted values with true values, displaying confusion matrices, learning curves, model performance, and scalability analysis. The GUI allows users to customize the analysis by selecting different models, time periods, or variables of interest, making it accessible and user-friendly for individuals without extensive programming knowledge. The combination of exploring the dataset, forecasting stock prices, predicting daily returns, and developing a GUI creates a comprehensive framework for analyzing and understanding stock market trends. By leveraging machine learning algorithms and evaluating performance metrics, we gain valuable insights into the accuracy and effectiveness of our predictions. The GUI further enhances the accessibility and usability of the analysis, enabling users to make data-driven decisions and explore the stock market with ease.