Author:
Publisher:
ISBN:
Category : Molecular structure
Languages : en
Pages : 240
Book Description
Large Amplitude Motion in Molecules
Author:
Publisher:
ISBN:
Category : Molecular structure
Languages : en
Pages : 240
Book Description
Publisher:
ISBN:
Category : Molecular structure
Languages : en
Pages : 240
Book Description
Large Amplitude Motion in Molecules
Author: Heinz Frei
Publisher:
ISBN: 9780387093109
Category : Molecular structure
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780387093109
Category : Molecular structure
Languages : en
Pages :
Book Description
Large Amplitude Motion in Molecules I
Author: Friedrich L. Boschke
Publisher: Springer
ISBN: 9783662154120
Category : Science
Languages : en
Pages : 182
Book Description
Publisher: Springer
ISBN: 9783662154120
Category : Science
Languages : en
Pages : 182
Book Description
Vibrational-rotational Spectroscopy And Molecular Dynamics
Author: Dusan Papousek
Publisher: World Scientific
ISBN: 9814502456
Category : Science
Languages : en
Pages : 576
Book Description
The book reviews the results of vibration-rotational spectroscopy of molecules obtained recently by combining modern computational methods of quantum chemistry with the new techniques of high-resolution rotational and vibration-rotational spectroscopy. It shows for example that the tunneling vibration-rotational spectroscopy of the van der Waals complexes provides a new look at intermolecular forces while the high precision and sensitivity of the submillimeter-wave and Fourier transform microwave spectroscopy make it possible to study complex rotational spectra of molecules in excited vibrational states. New results of high level ab initio quantum chemical computations of vibrational and rotational energy levels and dipole moment functions of unusual molecules will be discussed together with the recent discovery of clustering of energy levels in asymmetric tops. Group theoretical analysis of floppy molecules, especially the tunneling effects in nonrigid molecules, will also be discussed.
Publisher: World Scientific
ISBN: 9814502456
Category : Science
Languages : en
Pages : 576
Book Description
The book reviews the results of vibration-rotational spectroscopy of molecules obtained recently by combining modern computational methods of quantum chemistry with the new techniques of high-resolution rotational and vibration-rotational spectroscopy. It shows for example that the tunneling vibration-rotational spectroscopy of the van der Waals complexes provides a new look at intermolecular forces while the high precision and sensitivity of the submillimeter-wave and Fourier transform microwave spectroscopy make it possible to study complex rotational spectra of molecules in excited vibrational states. New results of high level ab initio quantum chemical computations of vibrational and rotational energy levels and dipole moment functions of unusual molecules will be discussed together with the recent discovery of clustering of energy levels in asymmetric tops. Group theoretical analysis of floppy molecules, especially the tunneling effects in nonrigid molecules, will also be discussed.
Theoretical and Computational Chemistry
Author: Iwona Gulaczyk
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110678284
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book explores the applications of computational chemistry ranging from the pharmaceutical industry and molecular structure determination to spectroscopy and astrophysics. The authors detail how calculations can be used to solve a wide range of practical challenges encountered in research and industry.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110678284
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book explores the applications of computational chemistry ranging from the pharmaceutical industry and molecular structure determination to spectroscopy and astrophysics. The authors detail how calculations can be used to solve a wide range of practical challenges encountered in research and industry.
The Structure of Small Molecules and Ions
Author: Ron Naaman
Publisher: Springer Science & Business Media
ISBN: 1468474243
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
The workshop on "The structure of small molecules and ions" was held at the Neve-Han guest house, near Jerusalem, Israel on December 13 to 18 in mem ory of the late Professor Itzhak Plesser. Professor Plesser played a central role in the research done both at the Weizmann Institute and at Argonne National Laboratories on the "Coulomb explosion" method. His friends honored his memory by organizing a meeting in which subjects related to Plesser's interests would be discussed. Just a week be fore the conference started we were struck by another tragedy -the death of our graduate student Ms. Hana Kovner, who participated in many of the Coulomb explosion experiments at the Weizmann Institute. We would like to dedicate these proceedings to her memory as well. The goal of the workshop was to bring together chemists and physicists working on different aspects of the structural problems of small molecular en tities. The time seemed appropriate for discussing experimental and theoretical concepts, since in recent years new methods have been introduced, and a large amount of information has been accumulated on systems not studied before, like unstable molecules, ions, van der Waals molecules and clusters. The program of the workshop reflects, we believe, these new developments. The meeting was characterized by intensive discussions in which the weak nesses and strengths of new and of well established concepts were revealed. We hope that it measured up to the high standards Itzhak Plesser maintained all through his scientific life.
Publisher: Springer Science & Business Media
ISBN: 1468474243
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
The workshop on "The structure of small molecules and ions" was held at the Neve-Han guest house, near Jerusalem, Israel on December 13 to 18 in mem ory of the late Professor Itzhak Plesser. Professor Plesser played a central role in the research done both at the Weizmann Institute and at Argonne National Laboratories on the "Coulomb explosion" method. His friends honored his memory by organizing a meeting in which subjects related to Plesser's interests would be discussed. Just a week be fore the conference started we were struck by another tragedy -the death of our graduate student Ms. Hana Kovner, who participated in many of the Coulomb explosion experiments at the Weizmann Institute. We would like to dedicate these proceedings to her memory as well. The goal of the workshop was to bring together chemists and physicists working on different aspects of the structural problems of small molecular en tities. The time seemed appropriate for discussing experimental and theoretical concepts, since in recent years new methods have been introduced, and a large amount of information has been accumulated on systems not studied before, like unstable molecules, ions, van der Waals molecules and clusters. The program of the workshop reflects, we believe, these new developments. The meeting was characterized by intensive discussions in which the weak nesses and strengths of new and of well established concepts were revealed. We hope that it measured up to the high standards Itzhak Plesser maintained all through his scientific life.
Molecular Structure by Diffraction Methods
Author: G A Sim
Publisher: Royal Society of Chemistry
ISBN: 1847556779
Category : Science
Languages : en
Pages : 456
Book Description
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Publisher: Royal Society of Chemistry
ISBN: 1847556779
Category : Science
Languages : en
Pages : 456
Book Description
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Molecular Symmetry, Super-Rotation, and Semiclassical Motion
Author: Hanno Schmiedt
Publisher: Springer
ISBN: 3319660713
Category : Science
Languages : en
Pages : 172
Book Description
This book presents a range of fundamentally new approaches to solving problems involving traditional molecular models. Fundamental molecular symmetry is shown to open new avenues for describing molecular dynamics beyond standard perturbation techniques. Traditional concepts used to describe molecular dynamics are based on a few fundamental assumptions, the ball-and-stick picture of molecular structure and the respective perturbative treatment of different kinds of couplings between otherwise separate motions. The book points out the conceptual limits of these models and, by focusing on the most essential idea of theoretical physics, namely symmetry, shows how to overcome those limits by introducing fundamentally new concepts. The book begins with an introduction to molecular symmetry in general, followed by a discussion of nuclear spin symmetry. Here, a new correlation between identical particle exchange and spin angular momentum symmetry of nuclei is exhibited. The central part of the book is the discussion of extremely floppy molecules, which are not describable in the framework of traditional theories. The book introduces a fundamentally new approach to describing the molecular dynamics of these molecules - the super-rotor model, which is based on a five-dimensional symmetry that has never been observed in molecules before. By applying the super-rotor theory to the prototype of floppy molecules, protonated methane, this model can consistently predict the symmetry and energy of low-energy states, which were characterized experimentally only a few years ago. The theoretical predictions agree with the experimental results, which makes the prospect of further developing the super-rotor theory and applying it to other molecules a promising one. In the final section, the book also covers the topic of ultrafast rotations, where usual quantum calculations reach their natural limits. A semi-classical method for determining rotational energies, developed in the early 1990s, is shown to be attachable to quantum calculations of the vibrational states. This new combined method is suitable for efficiently calculating ro-vibrational energies, even for molecular states with large angular momentum.
Publisher: Springer
ISBN: 3319660713
Category : Science
Languages : en
Pages : 172
Book Description
This book presents a range of fundamentally new approaches to solving problems involving traditional molecular models. Fundamental molecular symmetry is shown to open new avenues for describing molecular dynamics beyond standard perturbation techniques. Traditional concepts used to describe molecular dynamics are based on a few fundamental assumptions, the ball-and-stick picture of molecular structure and the respective perturbative treatment of different kinds of couplings between otherwise separate motions. The book points out the conceptual limits of these models and, by focusing on the most essential idea of theoretical physics, namely symmetry, shows how to overcome those limits by introducing fundamentally new concepts. The book begins with an introduction to molecular symmetry in general, followed by a discussion of nuclear spin symmetry. Here, a new correlation between identical particle exchange and spin angular momentum symmetry of nuclei is exhibited. The central part of the book is the discussion of extremely floppy molecules, which are not describable in the framework of traditional theories. The book introduces a fundamentally new approach to describing the molecular dynamics of these molecules - the super-rotor model, which is based on a five-dimensional symmetry that has never been observed in molecules before. By applying the super-rotor theory to the prototype of floppy molecules, protonated methane, this model can consistently predict the symmetry and energy of low-energy states, which were characterized experimentally only a few years ago. The theoretical predictions agree with the experimental results, which makes the prospect of further developing the super-rotor theory and applying it to other molecules a promising one. In the final section, the book also covers the topic of ultrafast rotations, where usual quantum calculations reach their natural limits. A semi-classical method for determining rotational energies, developed in the early 1990s, is shown to be attachable to quantum calculations of the vibrational states. This new combined method is suitable for efficiently calculating ro-vibrational energies, even for molecular states with large angular momentum.
NMR Spectroscopy and its Application to Biomedical Research
Author: S.K. Sarkar
Publisher: Elsevier
ISBN: 0080537596
Category : Science
Languages : en
Pages : 407
Book Description
NMR has become the most diverse spectroscopic tool available to date in biomedical research. It is now routinely used to study biomolecular structure and dynamics particularly as a result of recent developments of a cascade of highly sophisticated multidimensional NMR pulse sequences, and of advances in genetic engineering to produce biomolecules, uniformly or selectively enriched with 13C, 15N and 2H.Features of this book:• Provides an up-to-date treatment of NMR techniques and their application to problems of biomedical interest• Most refined multidimensional pulse sequences including the basic aspects are covered by leading NMR spectroscopists.The book will be useful to NMR spectroscopists, biochemists, and to molecular biologists interested in the use of NMR techniques for solving biological problems.
Publisher: Elsevier
ISBN: 0080537596
Category : Science
Languages : en
Pages : 407
Book Description
NMR has become the most diverse spectroscopic tool available to date in biomedical research. It is now routinely used to study biomolecular structure and dynamics particularly as a result of recent developments of a cascade of highly sophisticated multidimensional NMR pulse sequences, and of advances in genetic engineering to produce biomolecules, uniformly or selectively enriched with 13C, 15N and 2H.Features of this book:• Provides an up-to-date treatment of NMR techniques and their application to problems of biomedical interest• Most refined multidimensional pulse sequences including the basic aspects are covered by leading NMR spectroscopists.The book will be useful to NMR spectroscopists, biochemists, and to molecular biologists interested in the use of NMR techniques for solving biological problems.
Thermal Analysis of Polymeric Materials
Author: Bernhard Wunderlich
Publisher: Springer Science & Business Media
ISBN: 3540263608
Category : Technology & Engineering
Languages : en
Pages : 908
Book Description
Thermal analysis is an old technique. It has been neglected to some degree because developments of convenient methods of measurement have been slow and teaching of the understanding of the basics of thermal analysis is often wanting. Flexible, linear macromolecules, also not as accurately simply called polymers, make up the final, third, class of molecules which only was identified in 1920. Polymers have neverbeenfullyintegratedintothedisciplinesofscienceandengineering. Thisbook is designed to teach thermal analysis and the understanding of all materials, flexible macromolecules, as well as those of the small molecules and rigid macromolecules. The macroscopic tool of inquiry is thermal analysis, and the results are linked to microscopic molecular structure and motion. Measurements of heat and mass are the two roots of quantitative science. The macroscopic heat is connected to the microscopic atomic motion, while the macroscopic mass is linked to the microscopic atomic structure. The macroscopic unitsofmeasurementofheatandmassarethejouleandthegram,chosentobeeasily discernable by the human senses. The microscopic units of motion and structure are 12 10 the picosecond (10 seconds) and the ångstrom (10 meters), chosen to fit the atomic scales. One notes a factor of 10,000 between the two atomic units when expressed in “human” units, second and gram—with one gram being equal to one cubic centimeter when considering water. Perhaps this is the reason for the much better understanding and greater interest in the structure of materials, being closer to human experience when compared to molecular motion.
Publisher: Springer Science & Business Media
ISBN: 3540263608
Category : Technology & Engineering
Languages : en
Pages : 908
Book Description
Thermal analysis is an old technique. It has been neglected to some degree because developments of convenient methods of measurement have been slow and teaching of the understanding of the basics of thermal analysis is often wanting. Flexible, linear macromolecules, also not as accurately simply called polymers, make up the final, third, class of molecules which only was identified in 1920. Polymers have neverbeenfullyintegratedintothedisciplinesofscienceandengineering. Thisbook is designed to teach thermal analysis and the understanding of all materials, flexible macromolecules, as well as those of the small molecules and rigid macromolecules. The macroscopic tool of inquiry is thermal analysis, and the results are linked to microscopic molecular structure and motion. Measurements of heat and mass are the two roots of quantitative science. The macroscopic heat is connected to the microscopic atomic motion, while the macroscopic mass is linked to the microscopic atomic structure. The macroscopic unitsofmeasurementofheatandmassarethejouleandthegram,chosentobeeasily discernable by the human senses. The microscopic units of motion and structure are 12 10 the picosecond (10 seconds) and the ångstrom (10 meters), chosen to fit the atomic scales. One notes a factor of 10,000 between the two atomic units when expressed in “human” units, second and gram—with one gram being equal to one cubic centimeter when considering water. Perhaps this is the reason for the much better understanding and greater interest in the structure of materials, being closer to human experience when compared to molecular motion.