Knot Groups

Knot Groups PDF Author: Lee Paul Neuwirth
Publisher: Princeton University Press
ISBN: 9780691079912
Category : Mathematics
Languages : en
Pages : 124

Get Book Here

Book Description
The description for this book, Knot Groups. Annals of Mathematics Studies. (AM-56), Volume 56, will be forthcoming.

Knot Groups

Knot Groups PDF Author: Lee Paul Neuwirth
Publisher: Princeton University Press
ISBN: 9780691079912
Category : Mathematics
Languages : en
Pages : 124

Get Book Here

Book Description
The description for this book, Knot Groups. Annals of Mathematics Studies. (AM-56), Volume 56, will be forthcoming.

Punctured Torus Groups and 2-Bridge Knot Groups (I)

Punctured Torus Groups and 2-Bridge Knot Groups (I) PDF Author: Hirotaka Akiyoshi
Publisher: Lecture Notes in Mathematics
ISBN:
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
Here is the first part of a work that provides a full account of Jorgensen's theory of punctured torus Kleinian groups and its generalization. It offers an elementary and self-contained description of Jorgensen's theory with a complete proof. Through various informative illustrations, readers are naturally led to an intuitive, synthetic grasp of the theory, which clarifies how a very simple fuchsian group evolves into complicated Kleinian groups.

2-Knots and Their Groups

2-Knots and Their Groups PDF Author: Jonathan Hillman
Publisher: CUP Archive
ISBN: 9780521378123
Category : Mathematics
Languages : en
Pages : 180

Get Book Here

Book Description
To attack certain problems in 4-dimensional knot theory the author draws on a variety of techniques, focusing on knots in S^T4, whose fundamental groups contain abelian normal subgroups. Their class contains the most geometrically appealing and best understood examples. Moreover, it is possible to apply work in algebraic methods to these problems. Work in four-dimensional topology is applied in later chapters to the problem of classifying 2-knots.

A Survey of Knot Theory

A Survey of Knot Theory PDF Author: Akio Kawauchi
Publisher: Birkhäuser
ISBN: 3034892276
Category : Mathematics
Languages : en
Pages : 431

Get Book Here

Book Description
Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.

Geometry and Topology Down Under

Geometry and Topology Down Under PDF Author: Craig D. Hodgson
Publisher: American Mathematical Soc.
ISBN: 0821884808
Category : Mathematics
Languages : en
Pages : 395

Get Book Here

Book Description
This book contains the proceedings of the conference Geometry & Topology Down Under, held July 11-22, 2011, at the University of Melbourne, Parkville, Australia, in honour of Hyam Rubinstein. The main topic of the book is low-dimensional geometry and topology. It includes both survey articles based on courses presented at the conferences and research articles devoted to important questions in low-dimensional geometry. Together, these contributions show how methods from different fields of mathematics contribute to the study of 3-manifolds and Gromov hyperbolic groups. It also contains a list of favorite problems by Hyam Rubinstein.

Geometry and Topology

Geometry and Topology PDF Author: Mccrory
Publisher: CRC Press
ISBN: 1000110842
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
This book discusses topics ranging from traditional areas of topology, such as knot theory and the topology of manifolds, to areas such as differential and algebraic geometry. It also discusses other topics such as three-manifolds, group actions, and algebraic varieties.

Knots In Hellas '98 - Proceedings Of The International Conference On Knot Theory And Its Ramifications

Knots In Hellas '98 - Proceedings Of The International Conference On Knot Theory And Its Ramifications PDF Author: Cameron Mca Gordon
Publisher: World Scientific
ISBN: 9814492876
Category : Mathematics
Languages : en
Pages : 580

Get Book Here

Book Description
There have been exciting developments in the area of knot theory in recent years. They include Thurston's work on geometric structures on 3-manifolds (e.g. knot complements), Gordon-Luecke work on surgeries on knots, Jones' work on invariants of links in S3, and advances in the theory of invariants of 3-manifolds based on Jones- and Vassiliev-type invariants of links. Jones ideas and Thurston's idea are connected by the following path: hyperbolic structures, PSL(2,C) representations, character varieties, quantization of the coordinate ring of the variety to skein modules (i.e. Kauffman, bracket skein module), and finally quantum invariants of 3-manifolds. This proceedings volume covers all those exciting topics.

Knots 90

Knots 90 PDF Author: Akio Kawauchi
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110875918
Category : Mathematics
Languages : en
Pages : 652

Get Book Here

Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Encyclopedia of Knot Theory

Encyclopedia of Knot Theory PDF Author: Colin Adams
Publisher: CRC Press
ISBN: 1000222381
Category : Education
Languages : en
Pages : 954

Get Book Here

Book Description
"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." – Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It’s a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." – Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory

Knot Theory

Knot Theory PDF Author: Vassily Olegovich Manturov
Publisher: CRC Press
ISBN: 0203402847
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
Since discovery of the Jones polynomial, knot theory has enjoyed a virtual explosion of important results and now plays a significant role in modern mathematics. In a unique presentation with contents not found in any other monograph, Knot Theory describes, with full proofs, the main concepts and the latest investigations in the field. The book is divided into six thematic sections. The first part discusses "pre-Vassiliev" knot theory, from knot arithmetics through the Jones polynomial and the famous Kauffman-Murasugi theorem. The second part explores braid theory, including braids in different spaces and simple word recognition algorithms. A section devoted to the Vassiliev knot invariants follows, wherein the author proves that Vassiliev invariants are stronger than all polynomial invariants and introduces Bar-Natan's theory on Lie algebra respresentations and knots. The fourth part describes a new way, proposed by the author, to encode knots by d-diagrams. This method allows the encoding of topological objects by words in a finite alphabet. Part Five delves into virtual knot theory and virtualizations of knot and link invariants. This section includes the author's own important results regarding new invariants of virtual knots. The book concludes with an introduction to knots in 3-manifolds and Legendrian knots and links, including Chekanov's differential graded algebra (DGA) construction. Knot Theory is notable not only for its expert presentation of knot theory's state of the art but also for its accessibility. It is valuable as a professional reference and will serve equally well as a text for a course on knot theory.