Transformation Groups and Algebraic K-Theory

Transformation Groups and Algebraic K-Theory PDF Author: Wolfgang Lück
Publisher: Springer
ISBN: 3540468277
Category : Mathematics
Languages : en
Pages : 455

Get Book Here

Book Description
The book focuses on the relation between transformation groups and algebraic K-theory. The general pattern is to assign to a geometric problem an invariant in an algebraic K-group which determines the problem. The algebraic K-theory of modules over a category is studied extensively and appplied to the fundamental category of G-space. Basic details of the theory of transformation groups sometimes hard to find in the literature, are collected here (Chapter I) for the benefit of graduate students. Chapters II and III contain advanced new material of interest to researchers working in transformation groups, algebraic K-theory or related fields.

Transformation Groups and Algebraic K-Theory

Transformation Groups and Algebraic K-Theory PDF Author: Wolfgang Lück
Publisher: Springer
ISBN: 3540468277
Category : Mathematics
Languages : en
Pages : 455

Get Book Here

Book Description
The book focuses on the relation between transformation groups and algebraic K-theory. The general pattern is to assign to a geometric problem an invariant in an algebraic K-group which determines the problem. The algebraic K-theory of modules over a category is studied extensively and appplied to the fundamental category of G-space. Basic details of the theory of transformation groups sometimes hard to find in the literature, are collected here (Chapter I) for the benefit of graduate students. Chapters II and III contain advanced new material of interest to researchers working in transformation groups, algebraic K-theory or related fields.

Algebraic K-Groups as Galois Modules

Algebraic K-Groups as Galois Modules PDF Author: Victor P. Snaith
Publisher: Birkhäuser
ISBN: 3034882076
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
This volume began as the last part of a one-term graduate course given at the Fields Institute for Research in the Mathematical Sciences in the Autumn of 1993. The course was one of four associated with the 1993-94 Fields Institute programme, which I helped to organise, entitled "Artin L-functions". Published as [132]' the final chapter of the course introduced a manner in which to construct class-group valued invariants from Galois actions on the algebraic K-groups, in dimensions two and three, of number rings. These invariants were inspired by the analogous Chin burg invariants of [34], which correspond to dimensions zero and one. The classical Chinburg invariants measure the Galois structure of classical objects such as units in rings of algebraic integers. However, at the "Galois Module Structure" workshop in February 1994, discussions about my invariant (0,1 (L/ K, 3) in the notation of Chapter 5) after my lecture revealed that a number of other higher-dimensional co homological and motivic invariants of a similar nature were beginning to surface in the work of several authors. Encouraged by this trend and convinced that K-theory is the archetypical motivic cohomology theory, I gratefully took the opportunity of collaboration on computing and generalizing these K-theoretic invariants. These generalizations took several forms - local and global, for example - as I followed part of number theory and the prevalent trends in the "Galois Module Structure" arithmetic geometry.

The Classical Groups and K-Theory

The Classical Groups and K-Theory PDF Author: Alexander J. Hahn
Publisher: Springer Science & Business Media
ISBN: 3662131528
Category : Mathematics
Languages : en
Pages : 589

Get Book Here

Book Description
It is a great satisfaction for a mathematician to witness the growth and expansion of a theory in which he has taken some part during its early years. When H. Weyl coined the words "classical groups", foremost in his mind were their connections with invariant theory, which his famous book helped to revive. Although his approach in that book was deliberately algebraic, his interest in these groups directly derived from his pioneering study of the special case in which the scalars are real or complex numbers, where for the first time he injected Topology into Lie theory. But ever since the definition of Lie groups, the analogy between simple classical groups over finite fields and simple classical groups over IR or C had been observed, even if the concept of "simplicity" was not quite the same in both cases. With the discovery of the exceptional simple complex Lie algebras by Killing and E. Cartan, it was natural to look for corresponding groups over finite fields, and already around 1900 this was done by Dickson for the exceptional Lie algebras G and E • However, a deep reason for this 2 6 parallelism was missing, and it is only Chevalley who, in 1955 and 1961, discovered that to each complex simple Lie algebra corresponds, by a uniform process, a group scheme (fj over the ring Z of integers, from which, for any field K, could be derived a group (fj(K).

Algebra, $K$-Theory, Groups, and Education

Algebra, $K$-Theory, Groups, and Education PDF Author: Hyman Bass
Publisher: American Mathematical Soc.
ISBN: 0821810871
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
This volume includes expositions of key developments over the past four decades in commutative and non-commutative algebra, algebraic $K$-theory, infinite group theory, and applications of algebra to topology. Many of the articles are based on lectures given at a conference at Columbia University honoring the 65th birthday of Hyman Bass. Important topics related to Bass's mathematical interests are surveyed by leading experts in the field. Of particular note is a professional autobiography of Professor Bass, and an article by Deborah Ball on mathematical education. The range of subjects covered in the book offers a convenient single source for topics in the field.

Algebraic K-theory of Crystallographic Groups

Algebraic K-theory of Crystallographic Groups PDF Author: Daniel Scott Farley
Publisher: Springer
ISBN: 3319081535
Category : Mathematics
Languages : en
Pages : 153

Get Book Here

Book Description
The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field.

K-Theory of Finite Groups and Orders

K-Theory of Finite Groups and Orders PDF Author: Richard G. Swan
Publisher: Springer
ISBN: 9783540049388
Category : Mathematics
Languages : en
Pages : 238

Get Book Here

Book Description
These notes are from a course given at the University of Chicago. No pretense of completeness is made. A great deal of additional material may be found in Bass' book [BK] which gives a remarkably complete account of algebraic K-theory. The present notes, however, contain a number of recent results of Jacobinski [J] and Roiter [R]. An excellent survey of the theory of orders with detailed references may be found in Reiner's article [RS].

Algebraic Groups: Structure and Actions

Algebraic Groups: Structure and Actions PDF Author: Mahir Bilen Can
Publisher: American Mathematical Soc.
ISBN: 1470426013
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
This volume contains the proceedings of the 2015 Clifford Lectures on Algebraic Groups: Structures and Actions, held from March 2–5, 2015, at Tulane University, New Orleans, Louisiana. This volume consists of six articles on algebraic groups, including an enhanced exposition of the classical results of Chevalley and Rosenlicht on the structure of algebraic groups; an enhanced survey of the recently developed theory of pseudo-reductive groups; and an exposition of the recently developed operational -theory for singular varieties. In addition, there are three research articles containing previously unpublished foundational results on birational automorphism groups of algebraic varieties; solution of Hermite-Joubert problem over -closed fields; and cohomological invariants and applications to classifying spaces. The old and new results presented in these articles will hopefully become cornerstones for the future development of the theory of algebraic groups and applications. Graduate students and researchers working in the fields of algebraic geometry, number theory, and representation theory will benefit from this unique and broad compilation of fundamental results on algebraic group theory.

Classification of Pseudo-reductive Groups (AM-191)

Classification of Pseudo-reductive Groups (AM-191) PDF Author: Brian Conrad
Publisher: Princeton University Press
ISBN: 1400874025
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
In the earlier monograph Pseudo-reductive Groups, Brian Conrad, Ofer Gabber, and Gopal Prasad explored the general structure of pseudo-reductive groups. In this new book, Classification of Pseudo-reductive Groups, Conrad and Prasad go further to study the classification over an arbitrary field. An isomorphism theorem proved here determines the automorphism schemes of these groups. The book also gives a Tits-Witt type classification of isotropic groups and displays a cohomological obstruction to the existence of pseudo-split forms. Constructions based on regular degenerate quadratic forms and new techniques with central extensions provide insight into new phenomena in characteristic 2, which also leads to simplifications of the earlier work. A generalized standard construction is shown to account for all possibilities up to mild central extensions. The results and methods developed in Classification of Pseudo-reductive Groups will interest mathematicians and graduate students who work with algebraic groups in number theory and algebraic geometry in positive characteristic.

The Classification of the Finite Simple Groups, Number 3

The Classification of the Finite Simple Groups, Number 3 PDF Author: Daniel Gorenstein
Publisher: American Mathematical Soc.
ISBN: 9780821803912
Category : Finite simple groups
Languages : en
Pages : 446

Get Book Here

Book Description
Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR

Reduction Theory and Arithmetic Groups

Reduction Theory and Arithmetic Groups PDF Author: Joachim Schwermer
Publisher: Cambridge University Press
ISBN: 1108935079
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
Arithmetic groups are generalisations, to the setting of algebraic groups over a global field, of the subgroups of finite index in the general linear group with entries in the ring of integers of an algebraic number field. They are rich, diverse structures and they arise in many areas of study. This text enables you to build a solid, rigorous foundation in the subject. It first develops essential geometric and number theoretical components to the investigations of arithmetic groups, and then examines a number of different themes, including reduction theory, (semi)-stable lattices, arithmetic groups in forms of the special linear group, unipotent groups and tori, and reduction theory for adelic coset spaces. Also included is a thorough treatment of the construction of geometric cycles in arithmetically defined locally symmetric spaces, and some associated cohomological questions. Written by a renowned expert, this book is a valuable reference for researchers and graduate students.