Author:
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 500
Book Description
Journal of the Japanese Society of Computational Statistics
Author:
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 500
Book Description
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 500
Book Description
Handbook of Computational Statistics
Author: James E. Gentle
Publisher: Springer Science & Business Media
ISBN: 3642215513
Category : Computers
Languages : en
Pages : 1180
Book Description
The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.
Publisher: Springer Science & Business Media
ISBN: 3642215513
Category : Computers
Languages : en
Pages : 1180
Book Description
The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.
Handbook of Computational Statistics
Author: Yuichi Mori
Publisher: Springer Science & Business Media
ISBN: 9783540404644
Category : Computers
Languages : en
Pages : 1096
Book Description
The Handbook of Computational Statistics: Concepts and Methodology is divided into four parts. It begins with an overview over the field of Computational Statistics. The second part presents several topics in the supporting field of statistical computing. Emphasis is placed on the need of fast and accurate numerical algorithms and it discusses some of the basic methodologies for transformation, data base handling and graphics treatment. The third part focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Finally a set of selected applications like Bioinformatics, Medical Imaging, Finance and Network Intrusion Detection highlight the usefulness of computational statistics.
Publisher: Springer Science & Business Media
ISBN: 9783540404644
Category : Computers
Languages : en
Pages : 1096
Book Description
The Handbook of Computational Statistics: Concepts and Methodology is divided into four parts. It begins with an overview over the field of Computational Statistics. The second part presents several topics in the supporting field of statistical computing. Emphasis is placed on the need of fast and accurate numerical algorithms and it discusses some of the basic methodologies for transformation, data base handling and graphics treatment. The third part focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Finally a set of selected applications like Bioinformatics, Medical Imaging, Finance and Network Intrusion Detection highlight the usefulness of computational statistics.
Compstat
Author: Wolfgang Härdle
Publisher: Springer Science & Business Media
ISBN: 3642574890
Category : Computers
Languages : en
Pages : 654
Book Description
This COMPSTAT 2002 book contains the Keynote, Invited, and Full Contributed papers presented in Berlin, August 2002. A companion volume including Short Communications and Posters is published on CD. The COMPSTAT 2002 is the 15th conference in a serie of biannual conferences with the objective to present the latest developments in Computational Statistics and is taking place from August 24th to August 28th, 2002. Previous COMPSTATs were in Vienna (1974), Berlin (1976), Leiden (1978), Edinburgh (1980), Toulouse (1982), Pra~ue (1984), Rome (1986), Copenhagen (1988), Dubrovnik (1990), Neuchatel (1992), Vienna (1994), Barcelona (1996), Bris tol (1998) and Utrecht (2000). COMPSTAT 2002 is organised by CASE, Center of Applied Statistics and Eco nomics at Humboldt-Universitat zu Berlin in cooperation with F'reie Universitat Berlin and University of Potsdam. The topics of COMPSTAT include methodological applications, innovative soft ware and mathematical developments, especially in the following fields: statistical risk management, multivariate and robust analysis, Markov Chain Monte Carlo Methods, statistics of E-commerce, new strategies in teaching (Multimedia, In ternet), computerbased sampling/questionnaires, analysis of large databases (with emphasis on computing in memory), graphical tools for data analysis, classification and clustering, new statistical software and historical development of software.
Publisher: Springer Science & Business Media
ISBN: 3642574890
Category : Computers
Languages : en
Pages : 654
Book Description
This COMPSTAT 2002 book contains the Keynote, Invited, and Full Contributed papers presented in Berlin, August 2002. A companion volume including Short Communications and Posters is published on CD. The COMPSTAT 2002 is the 15th conference in a serie of biannual conferences with the objective to present the latest developments in Computational Statistics and is taking place from August 24th to August 28th, 2002. Previous COMPSTATs were in Vienna (1974), Berlin (1976), Leiden (1978), Edinburgh (1980), Toulouse (1982), Pra~ue (1984), Rome (1986), Copenhagen (1988), Dubrovnik (1990), Neuchatel (1992), Vienna (1994), Barcelona (1996), Bris tol (1998) and Utrecht (2000). COMPSTAT 2002 is organised by CASE, Center of Applied Statistics and Eco nomics at Humboldt-Universitat zu Berlin in cooperation with F'reie Universitat Berlin and University of Potsdam. The topics of COMPSTAT include methodological applications, innovative soft ware and mathematical developments, especially in the following fields: statistical risk management, multivariate and robust analysis, Markov Chain Monte Carlo Methods, statistics of E-commerce, new strategies in teaching (Multimedia, In ternet), computerbased sampling/questionnaires, analysis of large databases (with emphasis on computing in memory), graphical tools for data analysis, classification and clustering, new statistical software and historical development of software.
Decision Sciences
Author: Raghu Nandan Sengupta
Publisher: CRC Press
ISBN: 1482282569
Category : Business & Economics
Languages : en
Pages : 1042
Book Description
This handbook is an endeavour to cover many current, relevant, and essential topics related to decision sciences in a scientific manner. Using this handbook, graduate students, researchers, as well as practitioners from engineering, statistics, sociology, economics, etc. will find a new and refreshing paradigm shift as to how these topics can be put to use beneficially. Starting from the basics to advanced concepts, authors hope to make the readers well aware of the different theoretical and practical ideas, which are the focus of study in decision sciences nowadays. It includes an excellent bibliography/reference/journal list, information about a variety of datasets, illustrated pseudo-codes, and discussion of future trends in research. Covering topics ranging from optimization, networks and games, multi-objective optimization, inventory theory, statistical methods, artificial neural networks, times series analysis, simulation modeling, decision support system, data envelopment analysis, queueing theory, etc., this reference book is an attempt to make this area more meaningful for varied readers. Noteworthy features of this handbook are in-depth coverage of different topics, solved practical examples, unique datasets for a variety of examples in the areas of decision sciences, in-depth analysis of problems through colored charts, 3D diagrams, and discussions about software.
Publisher: CRC Press
ISBN: 1482282569
Category : Business & Economics
Languages : en
Pages : 1042
Book Description
This handbook is an endeavour to cover many current, relevant, and essential topics related to decision sciences in a scientific manner. Using this handbook, graduate students, researchers, as well as practitioners from engineering, statistics, sociology, economics, etc. will find a new and refreshing paradigm shift as to how these topics can be put to use beneficially. Starting from the basics to advanced concepts, authors hope to make the readers well aware of the different theoretical and practical ideas, which are the focus of study in decision sciences nowadays. It includes an excellent bibliography/reference/journal list, information about a variety of datasets, illustrated pseudo-codes, and discussion of future trends in research. Covering topics ranging from optimization, networks and games, multi-objective optimization, inventory theory, statistical methods, artificial neural networks, times series analysis, simulation modeling, decision support system, data envelopment analysis, queueing theory, etc., this reference book is an attempt to make this area more meaningful for varied readers. Noteworthy features of this handbook are in-depth coverage of different topics, solved practical examples, unique datasets for a variety of examples in the areas of decision sciences, in-depth analysis of problems through colored charts, 3D diagrams, and discussions about software.
COMPSTAT 2008
Author: Paula Brito
Publisher: Springer Science & Business Media
ISBN: 3790820849
Category : Mathematics
Languages : en
Pages : 557
Book Description
18th Symposium Held in Porto, Portugal, 2008
Publisher: Springer Science & Business Media
ISBN: 3790820849
Category : Mathematics
Languages : en
Pages : 557
Book Description
18th Symposium Held in Porto, Portugal, 2008
Principal Component Analysis
Author: Parinya Sanguansat
Publisher: BoD – Books on Demand
ISBN: 9535101951
Category : Computers
Languages : en
Pages : 304
Book Description
This book is aimed at raising awareness of researchers, scientists and engineers on the benefits of Principal Component Analysis (PCA) in data analysis. In this book, the reader will find the applications of PCA in fields such as image processing, biometric, face recognition and speech processing. It also includes the core concepts and the state-of-the-art methods in data analysis and feature extraction.
Publisher: BoD – Books on Demand
ISBN: 9535101951
Category : Computers
Languages : en
Pages : 304
Book Description
This book is aimed at raising awareness of researchers, scientists and engineers on the benefits of Principal Component Analysis (PCA) in data analysis. In this book, the reader will find the applications of PCA in fields such as image processing, biometric, face recognition and speech processing. It also includes the core concepts and the state-of-the-art methods in data analysis and feature extraction.
Clustering Methodology for Symbolic Data
Author: Lynne Billard
Publisher: John Wiley & Sons
ISBN: 0470713933
Category : Mathematics
Languages : en
Pages : 348
Book Description
Covers everything readers need to know about clustering methodology for symbolic data—including new methods and headings—while providing a focus on multi-valued list data, interval data and histogram data This book presents all of the latest developments in the field of clustering methodology for symbolic data—paying special attention to the classification methodology for multi-valued list, interval-valued and histogram-valued data methodology, along with numerous worked examples. The book also offers an expansive discussion of data management techniques showing how to manage the large complex dataset into more manageable datasets ready for analyses. Filled with examples, tables, figures, and case studies, Clustering Methodology for Symbolic Data begins by offering chapters on data management, distance measures, general clustering techniques, partitioning, divisive clustering, and agglomerative and pyramid clustering. Provides new classification methodologies for histogram valued data reaching across many fields in data science Demonstrates how to manage a large complex dataset into manageable datasets ready for analysis Features very large contemporary datasets such as multi-valued list data, interval-valued data, and histogram-valued data Considers classification models by dynamical clustering Features a supporting website hosting relevant data sets Clustering Methodology for Symbolic Data will appeal to practitioners of symbolic data analysis, such as statisticians and economists within the public sectors. It will also be of interest to postgraduate students of, and researchers within, web mining, text mining and bioengineering.
Publisher: John Wiley & Sons
ISBN: 0470713933
Category : Mathematics
Languages : en
Pages : 348
Book Description
Covers everything readers need to know about clustering methodology for symbolic data—including new methods and headings—while providing a focus on multi-valued list data, interval data and histogram data This book presents all of the latest developments in the field of clustering methodology for symbolic data—paying special attention to the classification methodology for multi-valued list, interval-valued and histogram-valued data methodology, along with numerous worked examples. The book also offers an expansive discussion of data management techniques showing how to manage the large complex dataset into more manageable datasets ready for analyses. Filled with examples, tables, figures, and case studies, Clustering Methodology for Symbolic Data begins by offering chapters on data management, distance measures, general clustering techniques, partitioning, divisive clustering, and agglomerative and pyramid clustering. Provides new classification methodologies for histogram valued data reaching across many fields in data science Demonstrates how to manage a large complex dataset into manageable datasets ready for analysis Features very large contemporary datasets such as multi-valued list data, interval-valued data, and histogram-valued data Considers classification models by dynamical clustering Features a supporting website hosting relevant data sets Clustering Methodology for Symbolic Data will appeal to practitioners of symbolic data analysis, such as statisticians and economists within the public sectors. It will also be of interest to postgraduate students of, and researchers within, web mining, text mining and bioengineering.
Graphical Models
Author: Steffen L. Lauritzen
Publisher: Clarendon Press
ISBN: 019159122X
Category : Mathematics
Languages : en
Pages : 314
Book Description
The idea of modelling systems using graph theory has its origin in several scientific areas: in statistical physics (the study of large particle systems), in genetics (studying inheritable properties of natural species), and in interactions in contingency tables. The use of graphical models in statistics has increased considerably over recent years and the theory has been greatly developed and extended. This book provides the first comprehensive and authoritative account of the theory of graphical models and is written by a leading expert in the field. It contains the fundamental graph theory required and a thorough study of Markov properties associated with various type of graphs. The statistical theory of log-linear and graphical models for contingency tables, covariance selection models, and graphical models with mixed discrete-continous variables in developed detail. Special topics, such as the application of graphical models to probabilistic expert systems, are described briefly, and appendices give details of the multivarate normal distribution and of the theory of regular exponential families. The author has recently been awarded the RSS Guy Medal in Silver 1996 for his innovative contributions to statistical theory and practice, and especially for his work on graphical models.
Publisher: Clarendon Press
ISBN: 019159122X
Category : Mathematics
Languages : en
Pages : 314
Book Description
The idea of modelling systems using graph theory has its origin in several scientific areas: in statistical physics (the study of large particle systems), in genetics (studying inheritable properties of natural species), and in interactions in contingency tables. The use of graphical models in statistics has increased considerably over recent years and the theory has been greatly developed and extended. This book provides the first comprehensive and authoritative account of the theory of graphical models and is written by a leading expert in the field. It contains the fundamental graph theory required and a thorough study of Markov properties associated with various type of graphs. The statistical theory of log-linear and graphical models for contingency tables, covariance selection models, and graphical models with mixed discrete-continous variables in developed detail. Special topics, such as the application of graphical models to probabilistic expert systems, are described briefly, and appendices give details of the multivarate normal distribution and of the theory of regular exponential families. The author has recently been awarded the RSS Guy Medal in Silver 1996 for his innovative contributions to statistical theory and practice, and especially for his work on graphical models.
Advances in Data Analysis
Author: Reinhold Decker
Publisher: Springer Science & Business Media
ISBN: 3540709819
Category : Computers
Languages : en
Pages : 689
Book Description
This book focuses on exploratory data analysis, learning of latent structures in datasets, and unscrambling of knowledge. Coverage details a broad range of methods from multivariate statistics, clustering and classification, visualization and scaling as well as from data and time series analysis. It provides new approaches for information retrieval and data mining and reports a host of challenging applications in various fields.
Publisher: Springer Science & Business Media
ISBN: 3540709819
Category : Computers
Languages : en
Pages : 689
Book Description
This book focuses on exploratory data analysis, learning of latent structures in datasets, and unscrambling of knowledge. Coverage details a broad range of methods from multivariate statistics, clustering and classification, visualization and scaling as well as from data and time series analysis. It provides new approaches for information retrieval and data mining and reports a host of challenging applications in various fields.