Author: Dominique Orban
Publisher: SIAM
ISBN: 1611974720
Category : Mathematics
Languages : en
Pages : 101
Book Description
Numerous applications, including computational optimization and fluid dynamics, give rise to block linear systems of equations said to have the quasi-definite structure. In practical situations, the size or density of those systems can preclude a factorization approach, leaving only iterative methods as the solution technique. Known iterative methods, however, are not specifically designed to take advantage of the quasi-definite structure. This book discusses the connection between quasi-definite systems and linear least-squares problems, the most common and best understood problems in applied mathematics, and explains how quasi-definite systems can be solved using tailored iterative methods for linear least squares (with half as much work!). To encourage researchers and students to use the software, it is provided in MATLAB, Python, and Julia. The authors provide a concise account of the most well-known methods for symmetric systems and least-squares problems, research-level advances in the solution of problems with specific illustrations in optimization and fluid dynamics, and a website that hosts software in three languages.
Iterative Solution of Symmetric Quasi-Definite Linear Systems
Author: Dominique Orban
Publisher: SIAM
ISBN: 1611974720
Category : Mathematics
Languages : en
Pages : 101
Book Description
Numerous applications, including computational optimization and fluid dynamics, give rise to block linear systems of equations said to have the quasi-definite structure. In practical situations, the size or density of those systems can preclude a factorization approach, leaving only iterative methods as the solution technique. Known iterative methods, however, are not specifically designed to take advantage of the quasi-definite structure. This book discusses the connection between quasi-definite systems and linear least-squares problems, the most common and best understood problems in applied mathematics, and explains how quasi-definite systems can be solved using tailored iterative methods for linear least squares (with half as much work!). To encourage researchers and students to use the software, it is provided in MATLAB, Python, and Julia. The authors provide a concise account of the most well-known methods for symmetric systems and least-squares problems, research-level advances in the solution of problems with specific illustrations in optimization and fluid dynamics, and a website that hosts software in three languages.
Publisher: SIAM
ISBN: 1611974720
Category : Mathematics
Languages : en
Pages : 101
Book Description
Numerous applications, including computational optimization and fluid dynamics, give rise to block linear systems of equations said to have the quasi-definite structure. In practical situations, the size or density of those systems can preclude a factorization approach, leaving only iterative methods as the solution technique. Known iterative methods, however, are not specifically designed to take advantage of the quasi-definite structure. This book discusses the connection between quasi-definite systems and linear least-squares problems, the most common and best understood problems in applied mathematics, and explains how quasi-definite systems can be solved using tailored iterative methods for linear least squares (with half as much work!). To encourage researchers and students to use the software, it is provided in MATLAB, Python, and Julia. The authors provide a concise account of the most well-known methods for symmetric systems and least-squares problems, research-level advances in the solution of problems with specific illustrations in optimization and fluid dynamics, and a website that hosts software in three languages.
Iterative Methods for Linear Systems
Author: Maxim A. Olshanskii
Publisher: SIAM
ISBN: 1611973465
Category : Mathematics
Languages : en
Pages : 257
Book Description
Iterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??
Publisher: SIAM
ISBN: 1611973465
Category : Mathematics
Languages : en
Pages : 257
Book Description
Iterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??
Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Templates for the Solution of Linear Systems
Author: Richard Barrett
Publisher: SIAM
ISBN: 9781611971538
Category : Mathematics
Languages : en
Pages : 141
Book Description
In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire. Templates offer three distinct advantages: they are general and reusable; they are not language specific; and they exploit the expertise of both the numerical analyst, who creates a template reflecting in-depth knowledge of a specific numerical technique, and the computational scientist, who then provides "value-added" capability to the general template description, customizing it for specific needs. For each template that is presented, the authors provide: a mathematical description of the flow of algorithm; discussion of convergence and stopping criteria to use in the iteration; suggestions for applying a method to special matrix types; advice for tuning the template; tips on parallel implementations; and hints as to when and why a method is useful.
Publisher: SIAM
ISBN: 9781611971538
Category : Mathematics
Languages : en
Pages : 141
Book Description
In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire. Templates offer three distinct advantages: they are general and reusable; they are not language specific; and they exploit the expertise of both the numerical analyst, who creates a template reflecting in-depth knowledge of a specific numerical technique, and the computational scientist, who then provides "value-added" capability to the general template description, customizing it for specific needs. For each template that is presented, the authors provide: a mathematical description of the flow of algorithm; discussion of convergence and stopping criteria to use in the iteration; suggestions for applying a method to special matrix types; advice for tuning the template; tips on parallel implementations; and hints as to when and why a method is useful.
Saddle-Point Problems and Their Iterative Solution
Author: Miroslav Rozložník
Publisher: Springer
ISBN: 3030014312
Category : Mathematics
Languages : en
Pages : 147
Book Description
This book provides essential lecture notes on solving large linear saddle-point systems, which arise in a wide range of applications and often pose computational challenges in science and engineering. The focus is on discussing the particular properties of such linear systems, and a large selection of algebraic methods for solving them, with an emphasis on iterative methods and preconditioning. The theoretical results presented here are complemented by a case study on potential fluid flow problem in a real world-application. This book is mainly intended for students of applied mathematics and scientific computing, but also of interest for researchers and engineers working on various applications. It is assumed that the reader has completed a basic course on linear algebra and numerical mathematics.
Publisher: Springer
ISBN: 3030014312
Category : Mathematics
Languages : en
Pages : 147
Book Description
This book provides essential lecture notes on solving large linear saddle-point systems, which arise in a wide range of applications and often pose computational challenges in science and engineering. The focus is on discussing the particular properties of such linear systems, and a large selection of algebraic methods for solving them, with an emphasis on iterative methods and preconditioning. The theoretical results presented here are complemented by a case study on potential fluid flow problem in a real world-application. This book is mainly intended for students of applied mathematics and scientific computing, but also of interest for researchers and engineers working on various applications. It is assumed that the reader has completed a basic course on linear algebra and numerical mathematics.
Iterative Krylov Methods for Large Linear Systems
Author: H. A. van der Vorst
Publisher: Cambridge University Press
ISBN: 9780521818285
Category : Mathematics
Languages : en
Pages : 242
Book Description
Table of contents
Publisher: Cambridge University Press
ISBN: 9780521818285
Category : Mathematics
Languages : en
Pages : 242
Book Description
Table of contents
A Taste of Inverse Problems
Author: Martin Hanke
Publisher: SIAM
ISBN: 1611974933
Category : Mathematics
Languages : en
Pages : 171
Book Description
Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.
Publisher: SIAM
ISBN: 1611974933
Category : Mathematics
Languages : en
Pages : 171
Book Description
Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.
Numerical Algorithms
Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Iterative Solution of Large Linear Systems
Author: David M. Young
Publisher: Elsevier
ISBN: 1483274136
Category : Mathematics
Languages : en
Pages : 599
Book Description
Iterative Solution of Large Linear Systems describes the systematic development of a substantial portion of the theory of iterative methods for solving large linear systems, with emphasis on practical techniques. The focal point of the book is an analysis of the convergence properties of the successive overrelaxation (SOR) method as applied to a linear system where the matrix is "consistently ordered". Comprised of 18 chapters, this volume begins by showing how the solution of a certain partial differential equation by finite difference methods leads to a large linear system with a sparse matrix. The next chapter reviews matrix theory and the properties of matrices, as well as several theorems of matrix theory without proof. A number of iterative methods, including the SOR method, are then considered. Convergence theorems are also given for various iterative methods under certain assumptions on the matrix A of the system. Subsequent chapters deal with the eigenvalues of the SOR method for consistently ordered matrices; the optimum relaxation factor; nonstationary linear iterative methods; and semi-iterative methods. This book will be of interest to students and practitioners in the fields of computer science and applied mathematics.
Publisher: Elsevier
ISBN: 1483274136
Category : Mathematics
Languages : en
Pages : 599
Book Description
Iterative Solution of Large Linear Systems describes the systematic development of a substantial portion of the theory of iterative methods for solving large linear systems, with emphasis on practical techniques. The focal point of the book is an analysis of the convergence properties of the successive overrelaxation (SOR) method as applied to a linear system where the matrix is "consistently ordered". Comprised of 18 chapters, this volume begins by showing how the solution of a certain partial differential equation by finite difference methods leads to a large linear system with a sparse matrix. The next chapter reviews matrix theory and the properties of matrices, as well as several theorems of matrix theory without proof. A number of iterative methods, including the SOR method, are then considered. Convergence theorems are also given for various iterative methods under certain assumptions on the matrix A of the system. Subsequent chapters deal with the eigenvalues of the SOR method for consistently ordered matrices; the optimum relaxation factor; nonstationary linear iterative methods; and semi-iterative methods. This book will be of interest to students and practitioners in the fields of computer science and applied mathematics.
Recent Advances in Iterative Methods
Author: Gene Golub
Publisher: Springer Science & Business Media
ISBN: 1461393531
Category : Mathematics
Languages : en
Pages : 234
Book Description
This IMA Volume in Mathematics and its Applications RECENT ADVANCES IN ITERATIVE METHODS is based on the proceedings of a workshop that was an integral part of the 1991-92 IMA program on "Applied Linear Algebra. " Large systems of matrix equations arise frequently in applications and they have the prop erty that they are sparse and/or structured. The purpose of this workshop was to bring together researchers in numerical analysis and various ap plication areas to discuss where such problems arise and possible meth ods of solution. The last two days of the meeting were a celebration dedicated to Gene Golub on the occasion of his sixtieth birthday, with the program arranged by Jack Dongarra and Paul van Dooren. We are grateful to Richard Brualdi, George Cybenko, Alan George, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-long program. We especially thank Gene Golub, Anne Greenbaum, and Mitchell Luskin for organizing this workshop and editing the proceed ings. The financial support of the National Science Foundation and the Min nesota Supercomputer Institute made the workshop possible. A vner Friedman Willard Miller, Jr. xi PREFACE The solution of very large linear algebra problems is an integral part of many scientific computations.
Publisher: Springer Science & Business Media
ISBN: 1461393531
Category : Mathematics
Languages : en
Pages : 234
Book Description
This IMA Volume in Mathematics and its Applications RECENT ADVANCES IN ITERATIVE METHODS is based on the proceedings of a workshop that was an integral part of the 1991-92 IMA program on "Applied Linear Algebra. " Large systems of matrix equations arise frequently in applications and they have the prop erty that they are sparse and/or structured. The purpose of this workshop was to bring together researchers in numerical analysis and various ap plication areas to discuss where such problems arise and possible meth ods of solution. The last two days of the meeting were a celebration dedicated to Gene Golub on the occasion of his sixtieth birthday, with the program arranged by Jack Dongarra and Paul van Dooren. We are grateful to Richard Brualdi, George Cybenko, Alan George, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-long program. We especially thank Gene Golub, Anne Greenbaum, and Mitchell Luskin for organizing this workshop and editing the proceed ings. The financial support of the National Science Foundation and the Min nesota Supercomputer Institute made the workshop possible. A vner Friedman Willard Miller, Jr. xi PREFACE The solution of very large linear algebra problems is an integral part of many scientific computations.