Author: C. T. Kelley
Publisher: SIAM
ISBN: 9781611970920
Category : Mathematics
Languages : en
Pages : 195
Book Description
This book presents a carefully selected group of methods for unconstrained and bound constrained optimization problems and analyzes them in depth both theoretically and algorithmically. It focuses on clarity in algorithmic description and analysis rather than generality, and while it provides pointers to the literature for the most general theoretical results and robust software, the author thinks it is more important that readers have a complete understanding of special cases that convey essential ideas. A companion to Kelley's book, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995), this book contains many exercises and examples and can be used as a text, a tutorial for self-study, or a reference. Iterative Methods for Optimization does more than cover traditional gradient-based optimization: it is the first book to treat sampling methods, including the Hooke-Jeeves, implicit filtering, MDS, and Nelder-Mead schemes in a unified way, and also the first book to make connections between sampling methods and the traditional gradient-methods. Each of the main algorithms in the text is described in pseudocode, and a collection of MATLAB codes is available. Thus, readers can experiment with the algorithms in an easy way as well as implement them in other languages.
Iterative Methods for Optimization
Author: C. T. Kelley
Publisher: SIAM
ISBN: 9781611970920
Category : Mathematics
Languages : en
Pages : 195
Book Description
This book presents a carefully selected group of methods for unconstrained and bound constrained optimization problems and analyzes them in depth both theoretically and algorithmically. It focuses on clarity in algorithmic description and analysis rather than generality, and while it provides pointers to the literature for the most general theoretical results and robust software, the author thinks it is more important that readers have a complete understanding of special cases that convey essential ideas. A companion to Kelley's book, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995), this book contains many exercises and examples and can be used as a text, a tutorial for self-study, or a reference. Iterative Methods for Optimization does more than cover traditional gradient-based optimization: it is the first book to treat sampling methods, including the Hooke-Jeeves, implicit filtering, MDS, and Nelder-Mead schemes in a unified way, and also the first book to make connections between sampling methods and the traditional gradient-methods. Each of the main algorithms in the text is described in pseudocode, and a collection of MATLAB codes is available. Thus, readers can experiment with the algorithms in an easy way as well as implement them in other languages.
Publisher: SIAM
ISBN: 9781611970920
Category : Mathematics
Languages : en
Pages : 195
Book Description
This book presents a carefully selected group of methods for unconstrained and bound constrained optimization problems and analyzes them in depth both theoretically and algorithmically. It focuses on clarity in algorithmic description and analysis rather than generality, and while it provides pointers to the literature for the most general theoretical results and robust software, the author thinks it is more important that readers have a complete understanding of special cases that convey essential ideas. A companion to Kelley's book, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995), this book contains many exercises and examples and can be used as a text, a tutorial for self-study, or a reference. Iterative Methods for Optimization does more than cover traditional gradient-based optimization: it is the first book to treat sampling methods, including the Hooke-Jeeves, implicit filtering, MDS, and Nelder-Mead schemes in a unified way, and also the first book to make connections between sampling methods and the traditional gradient-methods. Each of the main algorithms in the text is described in pseudocode, and a collection of MATLAB codes is available. Thus, readers can experiment with the algorithms in an easy way as well as implement them in other languages.
Iterative Methods in Combinatorial Optimization
Author: Lap Chi Lau
Publisher: Cambridge University Press
ISBN: 1139499394
Category : Computers
Languages : en
Pages : 255
Book Description
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.
Publisher: Cambridge University Press
ISBN: 1139499394
Category : Computers
Languages : en
Pages : 255
Book Description
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.
Iterative Optimization in Inverse Problems
Author: Charles L. Byrne
Publisher: CRC Press
ISBN: 1482222337
Category : Business & Economics
Languages : en
Pages : 302
Book Description
Iterative Optimization in Inverse Problems brings together a number of important iterative algorithms for medical imaging, optimization, and statistical estimation. It incorporates recent work that has not appeared in other books and draws on the author’s considerable research in the field, including his recently developed class of SUMMA algorithms. Related to sequential unconstrained minimization methods, the SUMMA class includes a wide range of iterative algorithms well known to researchers in various areas, such as statistics and image processing. Organizing the topics from general to more specific, the book first gives an overview of sequential optimization, the subclasses of auxiliary-function methods, and the SUMMA algorithms. The next three chapters present particular examples in more detail, including barrier- and penalty-function methods, proximal minimization, and forward-backward splitting. The author also focuses on fixed-point algorithms for operators on Euclidean space and then extends the discussion to include distance measures other than the usual Euclidean distance. In the final chapters, specific problems illustrate the use of iterative methods previously discussed. Most chapters contain exercises that introduce new ideas and make the book suitable for self-study. Unifying a variety of seemingly disparate algorithms, the book shows how to derive new properties of algorithms by comparing known properties of other algorithms. This unifying approach also helps researchers—from statisticians working on parameter estimation to image scientists processing scanning data to mathematicians involved in theoretical and applied optimization—discover useful related algorithms in areas outside of their expertise.
Publisher: CRC Press
ISBN: 1482222337
Category : Business & Economics
Languages : en
Pages : 302
Book Description
Iterative Optimization in Inverse Problems brings together a number of important iterative algorithms for medical imaging, optimization, and statistical estimation. It incorporates recent work that has not appeared in other books and draws on the author’s considerable research in the field, including his recently developed class of SUMMA algorithms. Related to sequential unconstrained minimization methods, the SUMMA class includes a wide range of iterative algorithms well known to researchers in various areas, such as statistics and image processing. Organizing the topics from general to more specific, the book first gives an overview of sequential optimization, the subclasses of auxiliary-function methods, and the SUMMA algorithms. The next three chapters present particular examples in more detail, including barrier- and penalty-function methods, proximal minimization, and forward-backward splitting. The author also focuses on fixed-point algorithms for operators on Euclidean space and then extends the discussion to include distance measures other than the usual Euclidean distance. In the final chapters, specific problems illustrate the use of iterative methods previously discussed. Most chapters contain exercises that introduce new ideas and make the book suitable for self-study. Unifying a variety of seemingly disparate algorithms, the book shows how to derive new properties of algorithms by comparing known properties of other algorithms. This unifying approach also helps researchers—from statisticians working on parameter estimation to image scientists processing scanning data to mathematicians involved in theoretical and applied optimization—discover useful related algorithms in areas outside of their expertise.
Iterative Methods for Linear and Nonlinear Equations
Author: C. T. Kelley
Publisher: SIAM
ISBN: 9781611970944
Category : Mathematics
Languages : en
Pages : 179
Book Description
Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment.
Publisher: SIAM
ISBN: 9781611970944
Category : Mathematics
Languages : en
Pages : 179
Book Description
Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment.
Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Iterative Methods for Linear Systems
Author: Maxim A. Olshanskii
Publisher: SIAM
ISBN: 1611973465
Category : Mathematics
Languages : en
Pages : 257
Book Description
Iterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??
Publisher: SIAM
ISBN: 1611973465
Category : Mathematics
Languages : en
Pages : 257
Book Description
Iterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??
First-Order Methods in Optimization
Author: Amir Beck
Publisher: SIAM
ISBN: 1611974984
Category : Mathematics
Languages : en
Pages : 476
Book Description
The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.
Publisher: SIAM
ISBN: 1611974984
Category : Mathematics
Languages : en
Pages : 476
Book Description
The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.
Iterative Methods for Fixed Point Problems in Hilbert Spaces
Author: Andrzej Cegielski
Publisher: Springer
ISBN: 3642309011
Category : Mathematics
Languages : en
Pages : 312
Book Description
Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods generated by operators from these classes and present general convergence theorems. On this basis we discuss the conditions under which particular methods converge. A large part of the results presented in this monograph can be found in various forms in the literature (although several results presented here are new). We have tried, however, to show that the convergence of a large class of iteration methods follows from general properties of some classes of operators and from some general convergence theorems.
Publisher: Springer
ISBN: 3642309011
Category : Mathematics
Languages : en
Pages : 312
Book Description
Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods generated by operators from these classes and present general convergence theorems. On this basis we discuss the conditions under which particular methods converge. A large part of the results presented in this monograph can be found in various forms in the literature (although several results presented here are new). We have tried, however, to show that the convergence of a large class of iteration methods follows from general properties of some classes of operators and from some general convergence theorems.
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
Author: J. E. Dennis, Jr.
Publisher: SIAM
ISBN: 9781611971200
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.
Publisher: SIAM
ISBN: 9781611971200
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.
Optimization
Author: H. Ronald Miller
Publisher: John Wiley & Sons
ISBN: 1118031180
Category : Mathematics
Languages : en
Pages : 676
Book Description
A thorough and highly accessible resource for analysts in a broadrange of social sciences. Optimization: Foundations and Applications presents a series ofapproaches to the challenges faced by analysts who must find thebest way to accomplish particular objectives, usually with theadded complication of constraints on the available choices.Award-winning educator Ronald E. Miller provides detailed coverageof both classical, calculus-based approaches and newer,computer-based iterative methods. Dr. Miller lays a solid foundation for both linear and nonlinearmodels and quickly moves on to discuss applications, includingiterative methods for root-finding and for unconstrainedmaximization, approaches to the inequality constrained linearprogramming problem, and the complexities of inequality constrainedmaximization and minimization in nonlinear problems. Otherimportant features include: More than 200 geometric interpretations of algebraic results,emphasizing the intuitive appeal of mathematics Classic results mixed with modern numerical methods to aidusers of computer programs Extensive appendices containing mathematical details importantfor a thorough understanding of the topic With special emphasis on questions most frequently asked by thoseencountering this material for the first time, Optimization:Foundations and Applications is an extremely useful resource forprofessionals in such areas as mathematics, engineering, economicsand business, regional science, geography, sociology, politicalscience, management and decision sciences, public policy analysis,and numerous other social sciences. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available upon request from the Wileyeditorial department.
Publisher: John Wiley & Sons
ISBN: 1118031180
Category : Mathematics
Languages : en
Pages : 676
Book Description
A thorough and highly accessible resource for analysts in a broadrange of social sciences. Optimization: Foundations and Applications presents a series ofapproaches to the challenges faced by analysts who must find thebest way to accomplish particular objectives, usually with theadded complication of constraints on the available choices.Award-winning educator Ronald E. Miller provides detailed coverageof both classical, calculus-based approaches and newer,computer-based iterative methods. Dr. Miller lays a solid foundation for both linear and nonlinearmodels and quickly moves on to discuss applications, includingiterative methods for root-finding and for unconstrainedmaximization, approaches to the inequality constrained linearprogramming problem, and the complexities of inequality constrainedmaximization and minimization in nonlinear problems. Otherimportant features include: More than 200 geometric interpretations of algebraic results,emphasizing the intuitive appeal of mathematics Classic results mixed with modern numerical methods to aidusers of computer programs Extensive appendices containing mathematical details importantfor a thorough understanding of the topic With special emphasis on questions most frequently asked by thoseencountering this material for the first time, Optimization:Foundations and Applications is an extremely useful resource forprofessionals in such areas as mathematics, engineering, economicsand business, regional science, geography, sociology, politicalscience, management and decision sciences, public policy analysis,and numerous other social sciences. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available upon request from the Wileyeditorial department.