Investigation of Oxide Semiconductor Based Thin Films

Investigation of Oxide Semiconductor Based Thin Films PDF Author: Meena Suhanya Rajachidambaram
Publisher:
ISBN:
Category : Coating processes
Languages : en
Pages : 130

Get Book Here

Book Description
Nanostructured ZnO films were obtained via thermal oxidation of thin films formed with metallic Zn-nanoparticle dispersions. Commercial zinc nanoparticles used for this work were characterized by microscopic and thermal analysis methods to analyze the Zn-ZnO core shell structure, surface morphology and oxidation characteristics. These dispersions were spin-coated on SiO2/Si substrates and then annealed in air between 100 and 600 °C. Significant nanostructural changes were observed for the resulting films, particularly those from larger Zn nanoparticles. These nanostructures, including nanoneedles and nanorods, were likely formed due to fracturing of ZnO outer shell due to differential thermal expansion between the Zn core and the ZnO shell. At temperatures above 227 °C, the metallic Zn has a high vapor pressure leading to high mass transport through these defects. Ultimately the Zn vapor rapidly oxidizes in air to form the ZnO nanostructures. We have found that the resulting films annealed above 400 °C had high electrical resistivity. The zinc nanoparticles were incorporated into zinc indium oxide solution and spin-coated to form thin film transistor (TFT) test structures to evaluate the potential of forming nanostructured field effect sensors using simple solution processing. The functionalization of zinc tin oxide (ZTO) films with self-assembled monolayers (SAMs) of n-hexylphosphonic acid (n-HPA) was investigated. The n-HPA modified ZTO surfaces were characterized using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and electrical measurements. High contact angles were obtained suggesting high surface coverage of n-HPA on the ZTO films, which was also confirmed using XPS. The impact of n-HPA functionalization on the stability of ZTO TFTs was investigated. The n-HPA functionalized ZTO TFTs were either measured directly after drying or after post-annealing at 140 °C for 48 hours in flowing nitrogen. Their electrical characteristics were compared with that of non-functionalized ZTO reference TFTs fabricated using identical conditions. We found that the non-functionalized devices had a significant turn-on voltage (V[subscript ON]) shift of ~0.9 V and ~1.5 V for the non-annealed and the post-annealed conditions under positive gate bias stress for 10,000 seconds. The n-HPA modified devices showed very minimal shift in V[subscript ON] (0.1 V), regardless of post-thermal treatment. The VON instabilities were attributed to the interaction of species from the ambient atmosphere with the exposed ZTO back channel during gate voltage stress. These species can either accept or donate electrons resulting in changes in the channel conductance with respect to the applied stress.

Investigation of Oxide Semiconductor Based Thin Films

Investigation of Oxide Semiconductor Based Thin Films PDF Author: Meena Suhanya Rajachidambaram
Publisher:
ISBN:
Category : Coating processes
Languages : en
Pages : 130

Get Book Here

Book Description
Nanostructured ZnO films were obtained via thermal oxidation of thin films formed with metallic Zn-nanoparticle dispersions. Commercial zinc nanoparticles used for this work were characterized by microscopic and thermal analysis methods to analyze the Zn-ZnO core shell structure, surface morphology and oxidation characteristics. These dispersions were spin-coated on SiO2/Si substrates and then annealed in air between 100 and 600 °C. Significant nanostructural changes were observed for the resulting films, particularly those from larger Zn nanoparticles. These nanostructures, including nanoneedles and nanorods, were likely formed due to fracturing of ZnO outer shell due to differential thermal expansion between the Zn core and the ZnO shell. At temperatures above 227 °C, the metallic Zn has a high vapor pressure leading to high mass transport through these defects. Ultimately the Zn vapor rapidly oxidizes in air to form the ZnO nanostructures. We have found that the resulting films annealed above 400 °C had high electrical resistivity. The zinc nanoparticles were incorporated into zinc indium oxide solution and spin-coated to form thin film transistor (TFT) test structures to evaluate the potential of forming nanostructured field effect sensors using simple solution processing. The functionalization of zinc tin oxide (ZTO) films with self-assembled monolayers (SAMs) of n-hexylphosphonic acid (n-HPA) was investigated. The n-HPA modified ZTO surfaces were characterized using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and electrical measurements. High contact angles were obtained suggesting high surface coverage of n-HPA on the ZTO films, which was also confirmed using XPS. The impact of n-HPA functionalization on the stability of ZTO TFTs was investigated. The n-HPA functionalized ZTO TFTs were either measured directly after drying or after post-annealing at 140 °C for 48 hours in flowing nitrogen. Their electrical characteristics were compared with that of non-functionalized ZTO reference TFTs fabricated using identical conditions. We found that the non-functionalized devices had a significant turn-on voltage (V[subscript ON]) shift of ~0.9 V and ~1.5 V for the non-annealed and the post-annealed conditions under positive gate bias stress for 10,000 seconds. The n-HPA modified devices showed very minimal shift in V[subscript ON] (0.1 V), regardless of post-thermal treatment. The VON instabilities were attributed to the interaction of species from the ambient atmosphere with the exposed ZTO back channel during gate voltage stress. These species can either accept or donate electrons resulting in changes in the channel conductance with respect to the applied stress.

Thin Films and Heterostructures for Oxide Electronics

Thin Films and Heterostructures for Oxide Electronics PDF Author: Satishchandra B. Ogale
Publisher: Springer Science & Business Media
ISBN: 0387260897
Category : Technology & Engineering
Languages : en
Pages : 416

Get Book Here

Book Description
Oxides form a broad subject area of research and technology development which encompasses different disciplines such as materials science, solid state chemistry, physics etc. The aim of this book is to demonstrate the interplay of these fields and to provide an introduction to the techniques and methodologies involving film growth, characterization and device processing. The literature in this field is thus fairly scattered in different research journals covering one or the other aspect of the specific activity. This situation calls for a book that will consolidate this information and thus enable a beginner as well as an expert to get an overall perspective of the field, its foundations, and its projected progress.

Transparent Electronics

Transparent Electronics PDF Author: Elvira Fortunato
Publisher:
ISBN:
Category :
Languages : en
Pages : 337

Get Book Here

Book Description


Oxide Semiconductors: Volume 1633

Oxide Semiconductors: Volume 1633 PDF Author: Steve Durbin
Publisher: Materials Research Society
ISBN: 9781605116105
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Symposium R, "Oxide Semiconductors" was held December 1-6 at the 2013 MRS Fall Meeting in Boston, Massachusetts. Oxide semiconductors are poised to take a more active role in modern electronics, particularly in the field of thin film transistors. While many advances have been made in terms of our understanding of fundamental optical and electronic characteristics, there remain many questions in terms of defects, doping, and optimal growth/synthesis conditions. This symposium proceedings volume represents recent advances in growth and characterization of a number of different oxide semiconductors, as well as device fabrication.

A Study on Oxide-Semiconductor-Based Thin-Film Transistors and Memories with High-k Gate Dielectrics for System-on-Panel Applications

A Study on Oxide-Semiconductor-Based Thin-Film Transistors and Memories with High-k Gate Dielectrics for System-on-Panel Applications PDF Author: 蘇迺超
Publisher:
ISBN:
Category :
Languages : en
Pages : 220

Get Book Here

Book Description


Functional Oxide Based Thin-Film Materials

Functional Oxide Based Thin-Film Materials PDF Author: Dong-Sing Wuu
Publisher: MDPI
ISBN: 3039288377
Category : Science
Languages : en
Pages : 160

Get Book Here

Book Description
This Special Issue on Functional Oxide-Based Thin-Film Materials touches on the latest advancements in several aspects related to material science: the synthesis of novel oxide, photoluminescence characteristics, photocatalytic ability, energy storage, light emitter studies, low-emissivity glass coatings, and investigations of both nanostructure and thin-film properties. It represents an amalgamation of specialists working with device applications and shedding light on the properties and behavior of thin-film oxides (e.g., GaOx, Ga2O3, HfO2, LiNbO3, and doped ZnO, among numerous others). The papers cover many aspects of thin-film science and technology, from thin film to nanostructure and from material properties to optoelectronic applications, thus reflecting the many interests of the community of scientists active in the field.

Metal Oxide-Based Thin Film Structures

Metal Oxide-Based Thin Film Structures PDF Author: Nini Pryds
Publisher: Elsevier
ISBN: 0081017529
Category : Technology & Engineering
Languages : en
Pages : 562

Get Book Here

Book Description
Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. - Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field - Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation - Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike

Oxide Thin Film Transistors

Oxide Thin Film Transistors PDF Author: K. J. Saji
Publisher: Nova Science Publishers
ISBN: 9781536123821
Category : Science
Languages : en
Pages : 232

Get Book Here

Book Description
Transparent flexible electronics is an emerging technology which makes use of wide band gap semiconductors that can be processed at low temperatures on glass or plastic substrates. Electronic systems that cover large area and curved surfaces together with transparency bring the possibility of numerous applications that are outside the scope of rigid wafer based electronics. Flexible electronics, electronic textiles, a wearable wellness system, and sensory skin are some of the applications of flexible electronics. The key factor in the realization of transparent electronics is the development of high performance fully transparent thin film transistors. Thin film transistors (TFTs) based on transparent conducting amorphous oxide semiconductors (TAOS) such as InGaZnO (IGZO), zinc tin oxide (ZTO), zinc indium tin oxide (ZITO), etc. provide additional functionalities like transparency, high field effect mobility and potential for room temperature processing. The performance of these TAOS based TFTs are superior to their silicon (a-Si:H TFTs) and organic TFTs.Though there are monographs and books on a-Si:H TFTs and organic TFTs, a book on TAOS based TFTs is rare. This book introduces the work of graduate students and beginners to the field of amorphous semiconductors. The mass production of this kind of TFTs on large area substrates involves the complications associated with controlling the composition of oxide compound semiconductor thin film material. Pulsed laser deposition allows for the growth of an oxide semiconductor in a very high oxygen rich environment while co-sputtering is an effective technique for the growth of a multicomponent film and to control the film chemical composition in a systematic and easy way. These manufacturing aspects will be of interest to those working in the industry. The review on the n channel, p channel TFTs, and the detailed description for the extraction of various TFT parameters like the threshold voltage, field effect mobility, sub threshold slope and on-off ratio, etc. will be ready for those working in the field of transparent electronics.

Thin Films and Heterostructures for Oxide Electronics

Thin Films and Heterostructures for Oxide Electronics PDF Author: Satishchandra B. Ogale
Publisher: Springer
ISBN: 9780387507057
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Oxides form a broad subject area of research and technology development which encompasses different disciplines such as materials science, solid state chemistry, physics etc. The aim of this book is to demonstrate the interplay of these fields and to provide an introduction to the techniques and methodologies involving film growth, characterization and device processing. The literature in this field is thus fairly scattered in different research journals covering one or the other aspect of the specific activity. This situation calls for a book that will consolidate this information and thus enable a beginner as well as an expert to get an overall perspective of the field, its foundations, and its projected progress.

Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites

Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites PDF Author: Alejandro G. Roca
Publisher: Springer Nature
ISBN: 3030740730
Category : Technology & Engineering
Languages : en
Pages : 289

Get Book Here

Book Description
This book provides a general overview and current state of the art of different types of metal oxide nanomaterials, either in nanoparticles or thin film structure. It covers from the development and optimization of different nanofabrication/synthesis techniques for nanostructures which are currently the attention of the research community, the study of the structure and interactions by different characterization techniques of heterostructured materials and the final impact in different applications such as nanotherapy, data storage, super magnets, high-frequency devices. The book’s 13 chapters provide deep insight into the intriguing science of oxide materials and include contributions on novel technologies to fabricate nanomaterials with a broad range of functional properties (semiconducting, magnetic, ferroelectric, thermoelectric, optical, flexible and mechanical). This book is intended to the experts for consolidation of their knowledge but also for students who aim to learn and get basics of nanostructured metal oxides in diverse forms.