Investigation of Local Mixing and Its Influence on Core Scale Mixing (dispersion)

Investigation of Local Mixing and Its Influence on Core Scale Mixing (dispersion) PDF Author: Raman Kumar Jha
Publisher:
ISBN:
Category :
Languages : en
Pages : 424

Get Book Here

Book Description
Local displacement efficiency in miscible floods is significantly affected by mixing taking place in the medium. Laboratory experiments usually measure flow-averaged ("cup mixed") effluent concentration histories. The core-scale averaged mixing, termed as dispersion, is used to quantify mixing in flow through porous media. The dispersion coefficient has the contributions of convective spreading and diffusion lumped together. Despite decades of research there remain questions about the nature and origin of dispersion. The main objective of this research is to understand the basic physics of solute transport and mixing at the pore scale and to use this information to explain core-scale mixing behavior (dispersion). We use two different approaches to study the interaction between convective spreading and diffusion for a range of flow conditions and the influence of their interaction on dispersion. In the first approach, we perform a direct numerical simulation of pore scale solute transport (by solving the Navier Stokes and convection diffusion equations) in a surrogate pore space. The second approach tracks movement of solute particles through a network model that is physically representative of real granular material. The first approach is useful in direct visualization of mixing in pore space whereas the second approach helps quantify the effect of pore scale process on core scale mixing (dispersion). Mixing in porous media results from interaction between convective spreading and molecular diffusion. The converging-diverging flow around sand grains causes the solute front to stretch, split and rejoin. In this process the area of contact between regions of high and low solute concentrations increases by and order of magnitude. Diffusion tends to reduce local variations in solute concentration inside the pore body. If the fluid velocity is small, diffusion is able to homogenize the solute concentration inside each pore. On the other hand, in the limit of very large fluid velocity (or no diffusion) local mixing because of diffusion tends to zero and dispersion is entirely caused by convective spreading. Flow reversal provides insights about mixing mechanisms in flow through porous media. For purely convective transport, upon flow reversal solute particles retrace their path to the inlet. Convective spreading cancels and echo dispersion is zero. Diffusion, even though small in magnitude, causes local mixing and makes dispersion in porous media irreversible. Echo dispersion in porous media is far greater than diffusion and as large as forward (transmission) dispersion. In the second approach, we study dispersion in porous media by tracking movement of a swarm of solute particles through a physically representative network model. We developed deterministic rules to trace paths of solute particles through the network. These rules yield flow streamlines through the network comparable to those obtained from a full solution of Stokes' equation. In the absence of diffusion the paths of all solute particles are completely determined and reversible. We track the movement of solute particles on these paths to investigate dispersion caused by purely convective spreading at the pore scale. Then we superimpose diffusion and study its influence on dispersion. In this way we obtain for the first time an unequivocal assessment of the roles of convective spreading and diffusion in hydrodynamic dispersion through porous media. Alternative particle tracking algorithms that use a probabilistic choice of an out-flowing throat at a pore fail to quantify convective spreading accurately. For Fickian behavior of dispersion it is essential that all solute particles encounter a wide range of independent (and identically distributed) velocities. If plug flow occurs in the pore throats a solute particle can encounter a wide range of independent velocities because of velocity differences in pore throats and randomness of pore structure. Plug flow leads to a purely convective spreading that is asymptotically Fickian. Diffusion superimposed on plug low acts independently of convective spreading causing dispersion to be simply the sum of convective spreading and diffusion. In plug flow hydrodynamic dispersion varies linearly with the pore-scale Peclet number. For a more realistic parabolic velocity profile in pore throats particles near the solid surface of the medium do not have independent velocities. Now purely convective spreading is non-Fickian. When diffusion is non-zero, solute particles can move away from the low velocity region near the solid surface into the main flow stream and subsequently dispersion again becomes asymptotically Fickian. Now dispersion is the result of an interaction between convection and diffusion and its results in a weak non-linear dependence of dispersion on Peclet number. The dispersion coefficients predicted by particle tracking through the network are in excellent agreement with the literature experimental data. We conclude that the essential phenomena giving rise to hydrodynamic dispersion observed in porous media are (i) stream splitting of the solute front at every pore, thus causing independence of partical velocities purely by convection, (ii) a velocity gradient within throats and (iii) diffusion. Taylor's dispersion in a capillary tube accounts for only the second and third of these phenomena, yielding a quadratic dependence of dispersion on Peclet number. Plug flow in the bonds of a physically representative network accounts for the only the first and third phenomena, resulting in a linear dependence of dispersion upon Peclet number.

Investigation of Local Mixing and Its Influence on Core Scale Mixing (dispersion)

Investigation of Local Mixing and Its Influence on Core Scale Mixing (dispersion) PDF Author: Raman Kumar Jha
Publisher:
ISBN:
Category :
Languages : en
Pages : 424

Get Book Here

Book Description
Local displacement efficiency in miscible floods is significantly affected by mixing taking place in the medium. Laboratory experiments usually measure flow-averaged ("cup mixed") effluent concentration histories. The core-scale averaged mixing, termed as dispersion, is used to quantify mixing in flow through porous media. The dispersion coefficient has the contributions of convective spreading and diffusion lumped together. Despite decades of research there remain questions about the nature and origin of dispersion. The main objective of this research is to understand the basic physics of solute transport and mixing at the pore scale and to use this information to explain core-scale mixing behavior (dispersion). We use two different approaches to study the interaction between convective spreading and diffusion for a range of flow conditions and the influence of their interaction on dispersion. In the first approach, we perform a direct numerical simulation of pore scale solute transport (by solving the Navier Stokes and convection diffusion equations) in a surrogate pore space. The second approach tracks movement of solute particles through a network model that is physically representative of real granular material. The first approach is useful in direct visualization of mixing in pore space whereas the second approach helps quantify the effect of pore scale process on core scale mixing (dispersion). Mixing in porous media results from interaction between convective spreading and molecular diffusion. The converging-diverging flow around sand grains causes the solute front to stretch, split and rejoin. In this process the area of contact between regions of high and low solute concentrations increases by and order of magnitude. Diffusion tends to reduce local variations in solute concentration inside the pore body. If the fluid velocity is small, diffusion is able to homogenize the solute concentration inside each pore. On the other hand, in the limit of very large fluid velocity (or no diffusion) local mixing because of diffusion tends to zero and dispersion is entirely caused by convective spreading. Flow reversal provides insights about mixing mechanisms in flow through porous media. For purely convective transport, upon flow reversal solute particles retrace their path to the inlet. Convective spreading cancels and echo dispersion is zero. Diffusion, even though small in magnitude, causes local mixing and makes dispersion in porous media irreversible. Echo dispersion in porous media is far greater than diffusion and as large as forward (transmission) dispersion. In the second approach, we study dispersion in porous media by tracking movement of a swarm of solute particles through a physically representative network model. We developed deterministic rules to trace paths of solute particles through the network. These rules yield flow streamlines through the network comparable to those obtained from a full solution of Stokes' equation. In the absence of diffusion the paths of all solute particles are completely determined and reversible. We track the movement of solute particles on these paths to investigate dispersion caused by purely convective spreading at the pore scale. Then we superimpose diffusion and study its influence on dispersion. In this way we obtain for the first time an unequivocal assessment of the roles of convective spreading and diffusion in hydrodynamic dispersion through porous media. Alternative particle tracking algorithms that use a probabilistic choice of an out-flowing throat at a pore fail to quantify convective spreading accurately. For Fickian behavior of dispersion it is essential that all solute particles encounter a wide range of independent (and identically distributed) velocities. If plug flow occurs in the pore throats a solute particle can encounter a wide range of independent velocities because of velocity differences in pore throats and randomness of pore structure. Plug flow leads to a purely convective spreading that is asymptotically Fickian. Diffusion superimposed on plug low acts independently of convective spreading causing dispersion to be simply the sum of convective spreading and diffusion. In plug flow hydrodynamic dispersion varies linearly with the pore-scale Peclet number. For a more realistic parabolic velocity profile in pore throats particles near the solid surface of the medium do not have independent velocities. Now purely convective spreading is non-Fickian. When diffusion is non-zero, solute particles can move away from the low velocity region near the solid surface into the main flow stream and subsequently dispersion again becomes asymptotically Fickian. Now dispersion is the result of an interaction between convection and diffusion and its results in a weak non-linear dependence of dispersion on Peclet number. The dispersion coefficients predicted by particle tracking through the network are in excellent agreement with the literature experimental data. We conclude that the essential phenomena giving rise to hydrodynamic dispersion observed in porous media are (i) stream splitting of the solute front at every pore, thus causing independence of partical velocities purely by convection, (ii) a velocity gradient within throats and (iii) diffusion. Taylor's dispersion in a capillary tube accounts for only the second and third of these phenomena, yielding a quadratic dependence of dispersion on Peclet number. Plug flow in the bonds of a physically representative network accounts for the only the first and third phenomena, resulting in a linear dependence of dispersion upon Peclet number.

SPE Journal

SPE Journal PDF Author:
Publisher:
ISBN:
Category : Petroleum engineering
Languages : en
Pages : 404

Get Book Here

Book Description


Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 660

Get Book Here

Book Description
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.

AIChE Symposium Series

AIChE Symposium Series PDF Author: American Institute of Chemical Engineers
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages : 96

Get Book Here

Book Description


High-Pressure Shock Compression of Solids IV

High-Pressure Shock Compression of Solids IV PDF Author: Lee Davison
Publisher: Springer Science & Business Media
ISBN: 1461222923
Category : Science
Languages : en
Pages : 351

Get Book Here

Book Description
While much is known about the effects of shock compression on monolithic materials, the unusual physical and chemical processes that take place when a porous medium is shocked have hardly been studied until now. Here, leading researchers in condensed matter physics, physical chemistry, metallurgy, mechanics, and materials science bridge this gap. The focus is on heterogeneous deformation mechanisms, nonequilibrium thermodynamics, and chemical processes, covering such topics as modelling the complex interplay of thermal, mechanical, and chemical processes; experimental data on pore collapse and their interpretation; and synthesis of new materials through shock-induced chemical reactions. By presenting not only the most recent results, but also the open questions that remain, these essays convey the excitement of developing a scientific basis for understanding shock compression.

Dispersion in Large Scale Permeable Media

Dispersion in Large Scale Permeable Media PDF Author: Abraham K. John
Publisher:
ISBN:
Category : Fluid mechanics
Languages : en
Pages : 470

Get Book Here

Book Description
Dispersivity data compiled over many lengths show that values at typical interwell distances are about two to four factors of ten larger than those measured on cores. Such large dispersivities may represent large mixing zones in the reservoir or they may be a result of convective spreading driven by permeability heterogeneity. This dissertation uses the idea of flow reversal (echo tests) to distinguish between convective spreading and dispersive mixing. Spreading is reversible, mixing is not. A zero or small value of echo dispersivity (estimated after flow reversal) implies little or no mixing and convection dominated transport. An echo dispersivity value equal to the transmission value (estimated after forward flow) would imply well mixed transport. A particle tracking code is developed to simulate echo tests for tracer transport in single phase, incompressible flow through three-dimensional, heterogeneous permeable media. Echo dispersivities are estimated for typical heterogeneity realizations and compared with corresponding transmission values at the field scale. The most important observation is that echo dispersivities are significantly larger than core scale values. They also lie on the overall trend of measured dispersivities and corroborate the large echo dispersivities previously inferred from single well tracer test data. This implies that significant mixing occurs in field scale transport. Echo dispersivities increase with permeability heterogeneity (variance and autocorrelation lengths). This is the effect of local (point or pore scale) mixing in the transverse direction, integrated over long and tortuous flow paths. Transport in typical reservoir formations, with significant autocorrelation in permeabilities, is most likely to be in a pre-asymptotic regime and cannot be described by a unique dispersivity value. This is because the Fickian model for dispersion fails to capture the mixing zone growth correctly in this regime. These results highlight the need to develop representative models for dispersion and improve upscaling methodologies.

Advanced Polymeric Materials

Advanced Polymeric Materials PDF Author: Gabriel O. Shonaike
Publisher: CRC Press
ISBN: 0203492900
Category : Technology & Engineering
Languages : en
Pages : 586

Get Book Here

Book Description
Featuring contributions from experts at some of the world's leading academic and industrial institutions, Advanced Polymeric Materials: Structure Property Relationships brings into book form a wealth of information previously available primarily only within computer programs. In a welcome narrative treatment, it provides comprehensive coverage of p

Exploration of Antarctic Subglacial Aquatic Environments

Exploration of Antarctic Subglacial Aquatic Environments PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309106354
Category : Science
Languages : en
Pages : 162

Get Book Here

Book Description
Antarctica is renowned for its extreme cold; yet surprisingly, radar measurements have revealed a vast network of lakes, rivers, and streams several kilometers beneath the Antarctic ice sheet. Sealed from Earth's atmosphere for millions of years, they may provide vital information about microbial evolution, the past climate of the Antarctic, and the formation of ice sheets, among other things. The next stage of exploration requires direct sampling of these aquatic systems. However, if sampling is not done cautiously, the environmental integrity and scientific value of these environments could be compromised. At the request of the National Science Foundation, this National Research Council assesses what is needed to responsibly explore subglacial lakes. Exploration of Antarctic Subglacial Aquatic Environments concludes that it is time for research on subglacial lakes to begin, and this research should be guided by internationally agreed upon protocols. The book suggests an initial protocol, which includes full characterization of the lakes by remote sensing, and minimum standards for biological and other types of contamination.

Applied mechanics reviews

Applied mechanics reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400

Get Book Here

Book Description


ERDA Energy Research Abstracts

ERDA Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 974

Get Book Here

Book Description