Author: Nikolai Saveliev
Publisher: Springer Science & Business Media
ISBN: 9783540437963
Category : Mathematics
Languages : en
Pages : 254
Book Description
The book gives a systematic exposition of the diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered include: constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its extensions, and Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. The text will be a valuable source for both the graduate student and researcher in mathematics and theoretical physics.
Invariants of Homology 3-Spheres
Author: Nikolai Saveliev
Publisher: Springer Science & Business Media
ISBN: 9783540437963
Category : Mathematics
Languages : en
Pages : 254
Book Description
The book gives a systematic exposition of the diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered include: constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its extensions, and Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. The text will be a valuable source for both the graduate student and researcher in mathematics and theoretical physics.
Publisher: Springer Science & Business Media
ISBN: 9783540437963
Category : Mathematics
Languages : en
Pages : 254
Book Description
The book gives a systematic exposition of the diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered include: constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its extensions, and Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. The text will be a valuable source for both the graduate student and researcher in mathematics and theoretical physics.
Lectures on the Topology of 3-Manifolds
Author: Nikolai Saveliev
Publisher: Walter de Gruyter
ISBN: 3110806355
Category : Mathematics
Languages : en
Pages : 212
Book Description
Publisher: Walter de Gruyter
ISBN: 3110806355
Category : Mathematics
Languages : en
Pages : 212
Book Description
Quantum Invariants
Author: Tomotada Ohtsuki
Publisher: World Scientific
ISBN: 9810246757
Category : Science
Languages : en
Pages : 508
Book Description
This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The Chern-Simons field theory and the Wess-Zumino-Witten model are described as the physical background of the invariants.
Publisher: World Scientific
ISBN: 9810246757
Category : Science
Languages : en
Pages : 508
Book Description
This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The Chern-Simons field theory and the Wess-Zumino-Witten model are described as the physical background of the invariants.
Bordered Heegaard Floer Homology
Author: Robert Lipshitz
Publisher: American Mathematical Soc.
ISBN: 1470428881
Category : Mathematics
Languages : en
Pages : 294
Book Description
The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.
Publisher: American Mathematical Soc.
ISBN: 1470428881
Category : Mathematics
Languages : en
Pages : 294
Book Description
The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.
Quantum Invariants
Author: Tomotada Ohtsuki
Publisher: World Scientific
ISBN: 9789812811172
Category : Invariants
Languages : en
Pages : 516
Book Description
This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The ChernOCoSimons field theory and the WessOCoZuminoOCoWitten model are described as the physical background of the invariants. Contents: Knots and Polynomial Invariants; Braids and Representations of the Braid Groups; Operator Invariants of Tangles via Sliced Diagrams; Ribbon Hopf Algebras and Invariants of Links; Monodromy Representations of the Braid Groups Derived from the KnizhnikOCoZamolodchikov Equation; The Kontsevich Invariant; Vassiliev Invariants; Quantum Invariants of 3-Manifolds; Perturbative Invariants of Knots and 3-Manifolds; The LMO Invariant; Finite Type Invariants of Integral Homology 3-Spheres. Readership: Researchers, lecturers and graduate students in geometry, topology and mathematical physics."
Publisher: World Scientific
ISBN: 9789812811172
Category : Invariants
Languages : en
Pages : 516
Book Description
This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The ChernOCoSimons field theory and the WessOCoZuminoOCoWitten model are described as the physical background of the invariants. Contents: Knots and Polynomial Invariants; Braids and Representations of the Braid Groups; Operator Invariants of Tangles via Sliced Diagrams; Ribbon Hopf Algebras and Invariants of Links; Monodromy Representations of the Braid Groups Derived from the KnizhnikOCoZamolodchikov Equation; The Kontsevich Invariant; Vassiliev Invariants; Quantum Invariants of 3-Manifolds; Perturbative Invariants of Knots and 3-Manifolds; The LMO Invariant; Finite Type Invariants of Integral Homology 3-Spheres. Readership: Researchers, lecturers and graduate students in geometry, topology and mathematical physics."
Floer Homology for Connected Sums of Homology 3-spheres
Author: Weiping Li
Publisher:
ISBN:
Category : Homology theory
Languages : en
Pages : 122
Book Description
Publisher:
ISBN:
Category : Homology theory
Languages : en
Pages : 122
Book Description
Lectures on the Topology of 3-Manifolds
Author: Nikolai Saveliev
Publisher: Walter de Gruyter
ISBN: 3110250365
Category : Mathematics
Languages : en
Pages : 220
Book Description
Progress in low-dimensional topology has been very quick in the last three decades, leading to the solutions of many difficult problems. Among the earlier highlights of this period was Casson's λ-invariant that was instrumental in proving the vanishing of the Rohlin invariant of homotopy 3-spheres. The proof of the three-dimensional Poincaré conjecture has rendered this application moot but hardly made Casson's contribution less relevant: in fact, a lot of modern day topology, including a multitude of Floer homology theories, can be traced back to his λ-invariant. The principal goal of this book, now in its second revised edition, remains providing an introduction to the low-dimensional topology and Casson's theory; it also reaches out, when appropriate, to more recent research topics. The book covers some classical material, such as Heegaard splittings, Dehn surgery, and invariants of knots and links. It then proceeds through the Kirby calculus and Rohlin's theorem to Casson's invariant and its applications, and concludes with a brief overview of recent developments. The book will be accessible to graduate students in mathematics and theoretical physics familiar with some elementary algebraic and differential topology, including the fundamental group, basic homology theory, transversality, and Poincaré duality on manifolds.
Publisher: Walter de Gruyter
ISBN: 3110250365
Category : Mathematics
Languages : en
Pages : 220
Book Description
Progress in low-dimensional topology has been very quick in the last three decades, leading to the solutions of many difficult problems. Among the earlier highlights of this period was Casson's λ-invariant that was instrumental in proving the vanishing of the Rohlin invariant of homotopy 3-spheres. The proof of the three-dimensional Poincaré conjecture has rendered this application moot but hardly made Casson's contribution less relevant: in fact, a lot of modern day topology, including a multitude of Floer homology theories, can be traced back to his λ-invariant. The principal goal of this book, now in its second revised edition, remains providing an introduction to the low-dimensional topology and Casson's theory; it also reaches out, when appropriate, to more recent research topics. The book covers some classical material, such as Heegaard splittings, Dehn surgery, and invariants of knots and links. It then proceeds through the Kirby calculus and Rohlin's theorem to Casson's invariant and its applications, and concludes with a brief overview of recent developments. The book will be accessible to graduate students in mathematics and theoretical physics familiar with some elementary algebraic and differential topology, including the fundamental group, basic homology theory, transversality, and Poincaré duality on manifolds.
Solitons, Geometry, and Topology: On the Crossroad
Author: V. M. Buchstaber
Publisher: American Mathematical Soc.
ISBN: 9780821806661
Category : Geometry
Languages : en
Pages : 204
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821806661
Category : Geometry
Languages : en
Pages : 204
Book Description
Complex Cobordism and Stable Homotopy Groups of Spheres
Author: Douglas C. Ravenel
Publisher: American Mathematical Soc.
ISBN: 082182967X
Category : Mathematics
Languages : en
Pages : 418
Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Publisher: American Mathematical Soc.
ISBN: 082182967X
Category : Mathematics
Languages : en
Pages : 418
Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Geometry of Low-Dimensional Manifolds: Volume 1, Gauge Theory and Algebraic Surfaces
Author: S. K. Donaldson
Publisher: Cambridge University Press
ISBN: 0521399785
Category : Mathematics
Languages : en
Pages : 277
Book Description
Distinguished researchers reveal the way different subjects (topology, differential and algebraic geometry and mathematical physics) interact in a text based on LMS Durham Symposium Lectures.
Publisher: Cambridge University Press
ISBN: 0521399785
Category : Mathematics
Languages : en
Pages : 277
Book Description
Distinguished researchers reveal the way different subjects (topology, differential and algebraic geometry and mathematical physics) interact in a text based on LMS Durham Symposium Lectures.