Invariant Probabilities of Transition Functions

Invariant Probabilities of Transition Functions PDF Author: Radu Zaharopol
Publisher: Springer
ISBN: 3319057235
Category : Mathematics
Languages : en
Pages : 405

Get Book Here

Book Description
The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended to transition functions. The proofs of the results obtained are new. For transition functions that satisfy very general conditions the book describes an ergodic decomposition that provides relevant information on the structure of the corresponding set of invariant probabilities. Ergodic decomposition means a splitting of the state space, where the invariant ergodic probability measures play a significant role. Other topics covered include: characterizations of the supports of various types of invariant probability measures and the use of these to obtain criteria for unique ergodicity, and the proofs of two mean ergodic theorems for a certain type of transition functions. The book will be of interest to mathematicians working in ergodic theory, dynamical systems, or the theory of Markov processes. Biologists, physicists and economists interested in interacting particle systems and rigorous mathematics will also find this book a valuable resource. Parts of it are suitable for advanced graduate courses. Prerequisites are basic notions and results on functional analysis, general topology, measure theory, the Bochner integral and some of its applications.

Invariant Probabilities of Transition Functions

Invariant Probabilities of Transition Functions PDF Author: Radu Zaharopol
Publisher: Springer
ISBN: 3319057235
Category : Mathematics
Languages : en
Pages : 405

Get Book Here

Book Description
The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended to transition functions. The proofs of the results obtained are new. For transition functions that satisfy very general conditions the book describes an ergodic decomposition that provides relevant information on the structure of the corresponding set of invariant probabilities. Ergodic decomposition means a splitting of the state space, where the invariant ergodic probability measures play a significant role. Other topics covered include: characterizations of the supports of various types of invariant probability measures and the use of these to obtain criteria for unique ergodicity, and the proofs of two mean ergodic theorems for a certain type of transition functions. The book will be of interest to mathematicians working in ergodic theory, dynamical systems, or the theory of Markov processes. Biologists, physicists and economists interested in interacting particle systems and rigorous mathematics will also find this book a valuable resource. Parts of it are suitable for advanced graduate courses. Prerequisites are basic notions and results on functional analysis, general topology, measure theory, the Bochner integral and some of its applications.

Markov Chains and Invariant Probabilities

Markov Chains and Invariant Probabilities PDF Author: Onésimo Hernández-Lerma
Publisher: Birkhäuser
ISBN: 3034880243
Category : Mathematics
Languages : en
Pages : 213

Get Book Here

Book Description
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).

Introduction to Stochastic Processes

Introduction to Stochastic Processes PDF Author: Gregory F. Lawler
Publisher: CRC Press
ISBN: 1482286114
Category : Mathematics
Languages : en
Pages : 249

Get Book Here

Book Description
Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.

Essentials of Stochastic Processes

Essentials of Stochastic Processes PDF Author: Richard Durrett
Publisher: Springer
ISBN: 3319456148
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Markov Processes, Structure and Asymptotic Behavior

Markov Processes, Structure and Asymptotic Behavior PDF Author: Murray Rosenblatt
Publisher: Springer Science & Business Media
ISBN: 3642652387
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
This book is concerned with a set of related problems in probability theory that are considered in the context of Markov processes. Some of these are natural to consider, especially for Markov processes. Other problems have a broader range of validity but are convenient to pose for Markov processes. The book can be used as the basis for an interesting course on Markov processes or stationary processes. For the most part these questions are considered for discrete parameter processes, although they are also of obvious interest for continuous time parameter processes. This allows one to avoid the delicate measure theoretic questions that might arise in the continuous parameter case. There is an attempt to motivate the material in terms of applications. Many of the topics concern general questions of structure and representation of processes that have not previously been presented in book form. A set of notes comment on the many problems that are still left open and related material in the literature. It is also hoped that the book will be useful as a reference to the reader who would like an introduction to these topics as well as to the reader interested in extending and completing results of this type.

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume II, Part II

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume II, Part II PDF Author: Lucien M. Le Cam
Publisher: Univ of California Press
ISBN: 0520366700
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1967.

Continuous-Time Markov Chains

Continuous-Time Markov Chains PDF Author: William J. Anderson
Publisher: Springer Science & Business Media
ISBN: 1461230381
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
Continuous time parameter Markov chains have been useful for modeling various random phenomena occurring in queueing theory, genetics, demography, epidemiology, and competing populations. This is the first book about those aspects of the theory of continuous time Markov chains which are useful in applications to such areas. It studies continuous time Markov chains through the transition function and corresponding q-matrix, rather than sample paths. An extensive discussion of birth and death processes, including the Stieltjes moment problem, and the Karlin-McGregor method of solution of the birth and death processes and multidimensional population processes is included, and there is an extensive bibliography. Virtually all of this material is appearing in book form for the first time.

Statistics, Probability, and Game Theory

Statistics, Probability, and Game Theory PDF Author: David Blackwell
Publisher: IMS
ISBN: 9780940600423
Category : Mathematics
Languages : en
Pages : 428

Get Book Here

Book Description
Most of the 26 papers are research reports on probability, statistics, gambling, game theory, Markov decision processes, set theory, and logic. But they also include reviews on comparing experiments, games of timing, merging opinions, associated memory models, and SPLIF's; historical views of Carnap, von Mises, and the Berkeley Statistics Department; and a brief history, appreciation, and bibliography of Berkeley professor Blackwell. A sampling of titles turns up The Hamiltonian Cycle Problem and Singularly Perturbed Markov Decision Process, A Pathwise Approach to Dynkin Games, The Redistribution of Velocity: Collision and Transformations, Casino Winnings at Blackjack, and Randomness and the Foundations of Probability. No index. Annotation copyrighted by Book News, Inc., Portland, OR

Doeblin and Modern Probability

Doeblin and Modern Probability PDF Author: Harry Cohn
Publisher: American Mathematical Soc.
ISBN: 0821851497
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
Wolfgang Doeblin, one of the greatest probabilists of this century, died in action during World War II at the age of twenty-five. He left behind several seminal contributions which have profoundly influenced the field and continue to provide inspiration for current research. This book is based on papers presented at the conference, `Fifty Years after Doeblin: Developments in the Theory of Markov Chains, Markov Processes, and Sums of Random Variables', held at Blaubeuren, Germany, in November 1991. Presented here for the first time is an account of Doeblin's life and work, revealing the circumstances of his tragic death in 1940. Organized into sections according to topic, the papers describe both Doeblin's original contributions as well as current developments. With contributions by top probabilists from sixteen countries, this book will interest both researchers in probability and science historians.

Nonlinear Stochastic Problems

Nonlinear Stochastic Problems PDF Author: S. Bucy
Publisher: Springer Science & Business Media
ISBN: 9400971427
Category : Mathematics
Languages : en
Pages : 609

Get Book Here

Book Description
This volume corresponds to the invited lectures and advanced research papers presented at the NATD Advanced Study Institute on Nonlinear Stochastic Problems with emphasis on Identification, Signal Processing, Control and Nonlinear Filtering held in Algarve (Portugal), on May 1982. The book is a blend of theoretical issues, algorithmic implementation aspects, and application examples. In many areas of science and engineering, there are problems which are intrinsically nonlinear 3nd stochastic in nature. Clear examples arise in identification and mOdeling, signal processing, nonlinear filtering, stochastic and adaptive conLrol. The meeting was organized because it was felt that there is a need for discussion of the methods and philosophy underlying these different areas, and in order to communicate those approaches that have proven to be effective. As the computational technology progresses, more general approaches to a number of problems which have been treated previously by linearization and perturbation methods become feasible and rewarding.