Author: John A. Beachy
Publisher: Cambridge University Press
ISBN: 9780521644075
Category : Mathematics
Languages : en
Pages : 252
Book Description
A first-year graduate text or reference for advanced undergraduates on noncommutative aspects of rings and modules.
Introductory Lectures on Rings and Modules
Author: John A. Beachy
Publisher: Cambridge University Press
ISBN: 9780521644075
Category : Mathematics
Languages : en
Pages : 252
Book Description
A first-year graduate text or reference for advanced undergraduates on noncommutative aspects of rings and modules.
Publisher: Cambridge University Press
ISBN: 9780521644075
Category : Mathematics
Languages : en
Pages : 252
Book Description
A first-year graduate text or reference for advanced undergraduates on noncommutative aspects of rings and modules.
Lectures on Rings and Modules
Author: Joachim Lambek
Publisher:
ISBN:
Category : Associative rings
Languages : en
Pages : 206
Book Description
Publisher:
ISBN:
Category : Associative rings
Languages : en
Pages : 206
Book Description
Exercises in Modules and Rings
Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 0387488995
Category : Mathematics
Languages : en
Pages : 427
Book Description
This volume offers a compendium of exercises of varying degree of difficulty in the theory of modules and rings. It is the companion volume to GTM 189. All exercises are solved in full detail. Each section begins with an introduction giving the general background and the theoretical basis for the problems that follow.
Publisher: Springer Science & Business Media
ISBN: 0387488995
Category : Mathematics
Languages : en
Pages : 427
Book Description
This volume offers a compendium of exercises of varying degree of difficulty in the theory of modules and rings. It is the companion volume to GTM 189. All exercises are solved in full detail. Each section begins with an introduction giving the general background and the theoretical basis for the problems that follow.
Lectures on Modules and Rings
Author: Tsit-Yuen Lam
Publisher: Springer Science & Business Media
ISBN: 1461205255
Category : Mathematics
Languages : en
Pages : 577
Book Description
This new book can be read independently from the first volume and may be used for lecturing, seminar- and self-study, or for general reference. It focuses more on specific topics in order to introduce readers to a wealth of basic and useful ideas without the hindrance of heavy machinery or undue abstractions. User-friendly with its abundance of examples illustrating the theory at virtually every step, the volume contains a large number of carefully chosen exercises to provide newcomers with practice, while offering a rich additional source of information to experts. A direct approach is used in order to present the material in an efficient and economic way, thereby introducing readers to a considerable amount of interesting ring theory without being dragged through endless preparatory material.
Publisher: Springer Science & Business Media
ISBN: 1461205255
Category : Mathematics
Languages : en
Pages : 577
Book Description
This new book can be read independently from the first volume and may be used for lecturing, seminar- and self-study, or for general reference. It focuses more on specific topics in order to introduce readers to a wealth of basic and useful ideas without the hindrance of heavy machinery or undue abstractions. User-friendly with its abundance of examples illustrating the theory at virtually every step, the volume contains a large number of carefully chosen exercises to provide newcomers with practice, while offering a rich additional source of information to experts. A direct approach is used in order to present the material in an efficient and economic way, thereby introducing readers to a considerable amount of interesting ring theory without being dragged through endless preparatory material.
Introduction To Commutative Algebra
Author: Michael F. Atiyah
Publisher: CRC Press
ISBN: 0429973268
Category : Mathematics
Languages : en
Pages : 140
Book Description
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Publisher: CRC Press
ISBN: 0429973268
Category : Mathematics
Languages : en
Pages : 140
Book Description
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Ring and Module Theory
Author: Toma Albu
Publisher: Springer Science & Business Media
ISBN: 3034600070
Category : Mathematics
Languages : en
Pages : 204
Book Description
This book is a collection of invited papers and articles, many presented at the 2008 International Conference on Ring and Module Theory. The papers explore the latest in various areas of algebra, including ring theory, module theory and commutative algebra.
Publisher: Springer Science & Business Media
ISBN: 3034600070
Category : Mathematics
Languages : en
Pages : 204
Book Description
This book is a collection of invited papers and articles, many presented at the 2008 International Conference on Ring and Module Theory. The papers explore the latest in various areas of algebra, including ring theory, module theory and commutative algebra.
A First Course in Noncommutative Rings
Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 1468404067
Category : Mathematics
Languages : en
Pages : 410
Book Description
One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.
Publisher: Springer Science & Business Media
ISBN: 1468404067
Category : Mathematics
Languages : en
Pages : 410
Book Description
One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.
Foundations of Module and Ring Theory
Author: Robert Wisbauer
Publisher: Routledge
ISBN: 1351447343
Category : Mathematics
Languages : en
Pages : 622
Book Description
This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.
Publisher: Routledge
ISBN: 1351447343
Category : Mathematics
Languages : en
Pages : 622
Book Description
This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.
An Introduction to Noncommutative Noetherian Rings
Author: K. R. Goodearl
Publisher: Cambridge University Press
ISBN: 9780521545372
Category : Mathematics
Languages : en
Pages : 372
Book Description
This introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. New material includes the basic types of quantum groups, which then serve as test cases for the theory developed.
Publisher: Cambridge University Press
ISBN: 9780521545372
Category : Mathematics
Languages : en
Pages : 372
Book Description
This introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. New material includes the basic types of quantum groups, which then serve as test cases for the theory developed.
Topics in the Homological Theory of Modules Over Commutative Rings
Author: Melvin Hochster
Publisher: American Mathematical Soc.
ISBN: 0821816748
Category : Mathematics
Languages : en
Pages : 86
Book Description
Contains expository lectures from the CBMS Regional Conference in Mathematics held at the University of Nebraska, June 1974. This book deals mainly with developments and still open questions in the homological theory of modules over commutative (usually, Noetherian) rings.
Publisher: American Mathematical Soc.
ISBN: 0821816748
Category : Mathematics
Languages : en
Pages : 86
Book Description
Contains expository lectures from the CBMS Regional Conference in Mathematics held at the University of Nebraska, June 1974. This book deals mainly with developments and still open questions in the homological theory of modules over commutative (usually, Noetherian) rings.