An Introduction to the Mathematical Structure of Quantum Mechanics

An Introduction to the Mathematical Structure of Quantum Mechanics PDF Author: F. Strocchi
Publisher: World Scientific
ISBN: 9812835229
Category : Science
Languages : en
Pages : 193

Get Book Here

Book Description
Arising out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students, this book formulates the mathematical structure of QM in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables.

An Introduction to the Mathematical Structure of Quantum Mechanics

An Introduction to the Mathematical Structure of Quantum Mechanics PDF Author: F. Strocchi
Publisher: World Scientific
ISBN: 9812835229
Category : Science
Languages : en
Pages : 193

Get Book Here

Book Description
Arising out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students, this book formulates the mathematical structure of QM in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables.

Introduction To The Mathematical Structure Of Quantum Mechanics, An: A Short Course For Mathematicians

Introduction To The Mathematical Structure Of Quantum Mechanics, An: A Short Course For Mathematicians PDF Author: Franco Strocchi
Publisher: World Scientific Publishing Company
ISBN: 981310659X
Category : Science
Languages : en
Pages : 157

Get Book Here

Book Description
This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. Rather than starting from the Dirac-Von Neumann axioms, the book offers a short presentation of the mathematical structure of QM using the C--algebraic structure of the observable based on the operational definition of measurements and the duality between states and observables. The description of states and observables as Hilbert space vectors and operators is then derived from the GNS and Gelfand-Naimark Theorems.For finite degrees of freedom, the Weyl algebra codifies the experimental limitations on the measurements of position and momentum (Heisenberg uncertainty relations) and Schroedinger QM follows from the von Neumann uniqueness theorem.The existence problem of the dynamics is related to the self-adjointness of the differential operator describing the Hamiltonian and solved by the Rellich-Kato theorems. Examples are discussed which include the explanation of the discreteness of the atomic spectra.Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman-Kac formula), the formulation in terms of ground state correlations (Wightman functions) and their analytic continuation to imaginary time (Euclidean QM). The quantum particle on a circle as an example of the interplay between topology and functional integral is also discussed in detail.

Quantum Theory for Mathematicians

Quantum Theory for Mathematicians PDF Author: Brian C. Hall
Publisher: Springer Science & Business Media
ISBN: 1461471168
Category : Science
Languages : en
Pages : 566

Get Book Here

Book Description
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

Physics for Mathematicians

Physics for Mathematicians PDF Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733

Get Book Here

Book Description


Quantum Mechanics for Mathematicians

Quantum Mechanics for Mathematicians PDF Author: Leon Armenovich Takhtadzhi͡an
Publisher: American Mathematical Soc.
ISBN: 0821846302
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.

An Introduction to the Mathematical Structure of Quantum Mechanics

An Introduction to the Mathematical Structure of Quantum Mechanics PDF Author: Franco Strocchi
Publisher:
ISBN: 9789812835239
Category : Electronic books
Languages : en
Pages : 193

Get Book Here

Book Description


A Mathematical Introduction to Electronic Structure Theory

A Mathematical Introduction to Electronic Structure Theory PDF Author: Lin Lin
Publisher: SIAM
ISBN: 1611975808
Category : Mathematics
Languages : en
Pages : 138

Get Book Here

Book Description
Based on first principle quantum mechanics, electronic structure theory is widely used in physics, chemistry, materials science, and related fields and has recently received increasing research attention in applied and computational mathematics. This book provides a self-contained, mathematically oriented introduction to the subject and its associated algorithms and analysis. It will help applied mathematics students and researchers with minimal background in physics understand the basics of electronic structure theory and prepare them to conduct research in this area. The book begins with an elementary introduction of quantum mechanics, including the uncertainty principle and the Hartree?Fock theory, which is considered the starting point of modern electronic structure theory. The authors then provide an in-depth discussion of two carefully selected topics that are directly related to several aspects of modern electronic structure calculations: density matrix based algorithms and linear response theory. Chapter 2 introduces the Kohn?Sham density functional theory with a focus on the density matrix based numerical algorithms, and Chapter 3 introduces linear response theory, which provides a unified viewpoint of several important phenomena in physics and numerics. An understanding of these topics will prepare readers for more advanced topics in this field. The book concludes with the random phase approximation to the correlation energy. The book is written for advanced undergraduate and beginning graduate students, specifically those with mathematical backgrounds but without a priori knowledge of quantum mechanics, and can be used for self-study by researchers, instructors, and other scientists. The book can also serve as a starting point to learn about many-body perturbation theory, a topic at the frontier of the study of interacting electrons.

Quantum Theory, Groups and Representations

Quantum Theory, Groups and Representations PDF Author: Peter Woit
Publisher: Springer
ISBN: 3319646125
Category : Science
Languages : en
Pages : 659

Get Book Here

Book Description
This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

Quantum Mechanics for Scientists and Engineers

Quantum Mechanics for Scientists and Engineers PDF Author: David A. B. Miller
Publisher: Cambridge University Press
ISBN: 1139471279
Category : Technology & Engineering
Languages : en
Pages : 575

Get Book Here

Book Description
If you need a book that relates the core principles of quantum mechanics to modern applications in engineering, physics, and nanotechnology, this is it. Students will appreciate the book's applied emphasis, which illustrates theoretical concepts with examples of nanostructured materials, optics, and semiconductor devices. The many worked examples and more than 160 homework problems help students to problem solve and to practise applications of theory. Without assuming a prior knowledge of high-level physics or classical mechanics, the text introduces Schrödinger's equation, operators, and approximation methods. Systems, including the hydrogen atom and crystalline materials, are analyzed in detail. More advanced subjects, such as density matrices, quantum optics, and quantum information, are also covered. Practical applications and algorithms for the computational analysis of simple structures make this an ideal introduction to quantum mechanics for students of engineering, physics, nanotechnology, and other disciplines. Additional resources available from www.cambridge.org/9780521897839.

Mathematical Methods in Quantum Mechanics

Mathematical Methods in Quantum Mechanics PDF Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).