Introduction to Statistics for Biology

Introduction to Statistics for Biology PDF Author: Trudy A. Watt
Publisher: CRC Press
ISBN: 1420011529
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
Even though an understanding of experimental design and statistics is central to modern biology, undergraduate and graduate students studying biological subjects often lack confidence in their numerical abilities. Allaying the anxieties of students, Introduction to Statistics for Biology, Third Edition provides a painless introduction to the subject while demonstrating the importance of statistics in contemporary biological studies. New to the Third Edition More detailed explanation of the ideas of elementary probability to simplify the rationale behind hypothesis testing, before moving on to simple tests An emphasis on experimental design and data simulation prior to performing an experiment A general template for carrying out statistical tests from hypothesis to interpretation Worked examples and updated Minitab analyses and graphics Downloadable resources contains a free trial version of Minitab Using Minitab throughout to present practical examples, the authors emphasize the interpretation of computer output. With its nontechnical approach and practical advice, this student-friendly introductory text lays the foundation for the advanced study of statistical analysis.

Introduction to Statistics for Biology

Introduction to Statistics for Biology PDF Author: Trudy A. Watt
Publisher: CRC Press
ISBN: 1420011529
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
Even though an understanding of experimental design and statistics is central to modern biology, undergraduate and graduate students studying biological subjects often lack confidence in their numerical abilities. Allaying the anxieties of students, Introduction to Statistics for Biology, Third Edition provides a painless introduction to the subject while demonstrating the importance of statistics in contemporary biological studies. New to the Third Edition More detailed explanation of the ideas of elementary probability to simplify the rationale behind hypothesis testing, before moving on to simple tests An emphasis on experimental design and data simulation prior to performing an experiment A general template for carrying out statistical tests from hypothesis to interpretation Worked examples and updated Minitab analyses and graphics Downloadable resources contains a free trial version of Minitab Using Minitab throughout to present practical examples, the authors emphasize the interpretation of computer output. With its nontechnical approach and practical advice, this student-friendly introductory text lays the foundation for the advanced study of statistical analysis.

Statistical Methods in Bioinformatics

Statistical Methods in Bioinformatics PDF Author: Warren J. Ewens
Publisher: Springer Science & Business Media
ISBN: 0387400826
Category : Science
Languages : en
Pages : 616

Get Book Here

Book Description
Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)

An Introduction To Experimental Design And Statistics For Biology

An Introduction To Experimental Design And Statistics For Biology PDF Author: David Heath
Publisher: CRC Press
ISBN: 9780203499245
Category : Mathematics
Languages : en
Pages : 390

Get Book Here

Book Description
This illustrated textbook for biologists provides a refreshingly clear and authoritative introduction to the key ideas of sampling, experimental design, and statistical analysis. The author presents statistical concepts through common sense, non-mathematical explanations and diagrams. These are followed by the relevant formulae and illustrated by w

Introductory Biological Statistics

Introductory Biological Statistics PDF Author: John E. Havel
Publisher: Waveland Press
ISBN: 1478639350
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
A thorough understanding of biology, no matter which subfield, requires a thorough understanding of statistics. As in previous editions, Havel and Hampton (with new co-author Scott Meiners) ground students in all essential methods of descriptive and inferential statistics, using examples from different biological sciences. The authors have retained the readable, accessible writing style popular with both students and instructors. Pedagogical improvements new to this edition include concept checks in all chapters to assist students in active learning and code samples showing how to solve many of the book's examples using R. Each chapter features numerous practice and homework exercises, with larger data sets available for download at waveland.com.

Modern Statistics for Modern Biology

Modern Statistics for Modern Biology PDF Author: SUSAN. HUBER HOLMES (WOLFGANG.)
Publisher: Cambridge University Press
ISBN: 1108427022
Category : Biometry
Languages : en
Pages : 407

Get Book Here

Book Description


Biostatistics with R

Biostatistics with R PDF Author: Babak Shahbaba
Publisher: Springer Science & Business Media
ISBN: 1461413028
Category : Medical
Languages : en
Pages : 355

Get Book Here

Book Description
Biostatistics with R is designed around the dynamic interplay among statistical methods, their applications in biology, and their implementation. The book explains basic statistical concepts with a simple yet rigorous language. The development of ideas is in the context of real applied problems, for which step-by-step instructions for using R and R-Commander are provided. Topics include data exploration, estimation, hypothesis testing, linear regression analysis, and clustering with two appendices on installing and using R and R-Commander. A novel feature of this book is an introduction to Bayesian analysis. This author discusses basic statistical analysis through a series of biological examples using R and R-Commander as computational tools. The book is ideal for instructors of basic statistics for biologists and other health scientists. The step-by-step application of statistical methods discussed in this book allows readers, who are interested in statistics and its application in biology, to use the book as a self-learning text.

Introductory Statistics for Biology

Introductory Statistics for Biology PDF Author: R. E. Parker
Publisher: Cambridge University Press
ISBN: 9780521427784
Category : Mathematics
Languages : en
Pages : 132

Get Book Here

Book Description
This introductory text presents the use of statistical methods as an integral part of biological investigation, yet one whose superficial complexities have deterred many biologists from using them. The author argues that the difficulties, such as they are, do not lie in mathematical manipulation, but in grasping a few simple, but unfamiliar concepts. He emphasizes the need for precisely defining problems and for careful selection of the most appropriate methods - a wide range of which are described and illustrated. Each chapter ends with a set of problems which are intended to help the student gain practical experience. No previous knowledge is assumed, and the student is encouraged to develop a competent and critical approach to analysing numerical data. In this second edition, the scope of the book has been extended, problems have been solved in a more satisfactory way, and a greater number of illustrative examples have been added.

Practical Statistics for Field Biology

Practical Statistics for Field Biology PDF Author: Jim Fowler
Publisher: John Wiley & Sons
ISBN: 1118685644
Category : Science
Languages : en
Pages : 235

Get Book Here

Book Description
Provides an excellent introductory text for students on the principles and methods of statistical analysis in the life sciences, helping them choose and analyse statistical tests for their own problems and present their findings. An understanding of statistical principles and methods is essential for any scientist but is particularly important for those in the life sciences. The field biologist faces very particular problems and challenges with statistics as "real-life" situations such as collecting insects with a sweep net or counting seagulls on a cliff face can hardly be expected to be as reliable or controllable as a laboratory-based experiment. Acknowledging the peculiarites of field-based data and its interpretation, this book provides a superb introduction to statistical analysis helping students relate to their particular and often diverse data with confidence and ease. To enhance the usefulness of this book, the new edition incorporates the more advanced method of multivariate analysis, introducing the nature of multivariate problems and describing the the techniques of principal components analysis, cluster analysis and discriminant analysis which are all applied to biological examples. An appendix detailing the statistical computing packages available has also been included. It will be extremely useful to undergraduates studying ecology, biology, and earth and environmental sciences and of interest to postgraduates who are not familiar with the application of multiavirate techniques and practising field biologists working in these areas.

Introduction to STATISTICS in a Biological Context

Introduction to STATISTICS in a Biological Context PDF Author: Edith Seier
Publisher: Createspace Independent Publishing Platform
ISBN: 9781463613372
Category : Biometry
Languages : en
Pages : 0

Get Book Here

Book Description
This is a textbook for a one-semester introductory course in statistics for undergraduate biology majors, students in pre-professional programs in the health sciences, and anybody interested in learning the basics of statistics in a scientific context.

Introduction to Nonparametric Statistics for the Biological Sciences Using R

Introduction to Nonparametric Statistics for the Biological Sciences Using R PDF Author: Thomas W. MacFarland
Publisher: Springer
ISBN: 3319306340
Category : Medical
Languages : en
Pages : 341

Get Book Here

Book Description
This book contains a rich set of tools for nonparametric analyses, and the purpose of this text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses and tests using R to broadly compare differences between data sets and statistical approach.