Introduction to Quantum Algorithms via Linear Algebra, second edition

Introduction to Quantum Algorithms via Linear Algebra, second edition PDF Author: Richard J. Lipton
Publisher: MIT Press
ISBN: 0262362155
Category : Science
Languages : en
Pages : 281

Get Book

Book Description
Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, it makes quantum algorithms accessible to students and researchers in computer science who have not taken courses in quantum physics or delved into fine details of quantum effects, apparatus, circuits, or theory.

Introduction to Quantum Algorithms via Linear Algebra, second edition

Introduction to Quantum Algorithms via Linear Algebra, second edition PDF Author: Richard J. Lipton
Publisher: MIT Press
ISBN: 0262362155
Category : Science
Languages : en
Pages : 281

Get Book

Book Description
Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, it makes quantum algorithms accessible to students and researchers in computer science who have not taken courses in quantum physics or delved into fine details of quantum effects, apparatus, circuits, or theory.

Quantum Algorithms via Linear Algebra

Quantum Algorithms via Linear Algebra PDF Author: Richard J. Lipton
Publisher: MIT Press
ISBN: 0262028395
Category : Science
Languages : en
Pages : 207

Get Book

Book Description
Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of all the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, this primer makes quantum algorithms accessible to students and researchers in computer science without the complications of quantum mechanical notation, physical concepts, and philosophical issues. After explaining the development of quantum operations and computations based on linear algebra, the book presents the major quantum algorithms, from seminal algorithms by Deutsch, Jozsa, and Simon through Shor's and Grover's algorithms to recent quantum walks. It covers quantum gates, computational complexity, and some graph theory. Mathematical proofs are generally short and straightforward; quantum circuits and gates are used to illuminate linear algebra; and the discussion of complexity is anchored in computational problems rather than machine models. Quantum Algorithms via Linear Algebra is suitable for classroom use or as a reference for computer scientists and mathematicians.

An Introduction to Quantum Computing

An Introduction to Quantum Computing PDF Author: Phillip Kaye
Publisher: OUP Oxford
ISBN: 0191524611
Category : Computers
Languages : en
Pages : 288

Get Book

Book Description
This concise, accessible text provides a thorough introduction to quantum computing - an exciting emergent field at the interface of the computer, engineering, mathematical and physical sciences. Aimed at advanced undergraduate and beginning graduate students in these disciplines, the text is technically detailed and is clearly illustrated throughout with diagrams and exercises. Some prior knowledge of linear algebra is assumed, including vector spaces and inner products. However, prior familiarity with topics such as quantum mechanics and computational complexity is not required.

An Introduction to Quantum Computing

An Introduction to Quantum Computing PDF Author: Phillip Kaye
Publisher: Oxford University Press on Demand
ISBN: 0198570007
Category : Computers
Languages : en
Pages : 287

Get Book

Book Description
The authors provide an introduction to quantum computing. Aimed at advanced undergraduate and beginning graduate students in these disciplines, this text is illustrated with diagrams and exercises.

Introduction to Classical and Quantum Computing

Introduction to Classical and Quantum Computing PDF Author: Thomas Wong
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book

Book Description
Introduction to Classical and Quantum Computing is for students who want to learn quantum computing beyond a conceptual level, but who lack advanced training in mathematics. The only prerequisite is trigonometry, and mathematics beyond that will be covered, including linear algebra. This book is suitable as a course textbook or for independent study.The text begins with a significant overview of classical computing, from how they add numbers to their computational limits, and it mirrors many of the quantum computing topics that are covered later. Then, the investigation of quantum computing begins with a single qubit and quantum gates acting on it, first using geometry and elementary algebra, and later using linear algebra. Computer algebra systems are utilized, and code for both Mathematica and SageMath is included. After one qubit, multi-qubit systems are covered, including how quantum computers add numbers, universal gate sets, and error correction. After this, readers learn how to program quantum circuits on actual quantum processors using IBM Quantum Experience. Afterward, entanglement and quantum protocols are explored. Finally, quantum algorithms are examined, culminating in Shor's algorithm for factoring. Abundant use of the Quirk quantum simulator is used throughout. Finally, a short discussion of careers in quantum computing is provided, along with some possible technical topics to learn next.

Quantum Computing

Quantum Computing PDF Author: Mikio Nakahara
Publisher: CRC Press
ISBN: 1420012290
Category : Mathematics
Languages : en
Pages : 439

Get Book

Book Description
Covering both theory and progressive experiments, Quantum Computing: From Linear Algebra to Physical Realizations explains how and why superposition and entanglement provide the enormous computational power in quantum computing. This self-contained, classroom-tested book is divided into two sections, with the first devoted to the theoretical aspect

Introduction to Quantum Computation

Introduction to Quantum Computation PDF Author: Ioan Burda
Publisher: Universal-Publishers
ISBN: 158112466X
Category : Computers
Languages : en
Pages : 168

Get Book

Book Description
"Introduction to Quantum Computation" is an introduction to a new rapidly developing theory of quantum computing. The book is a comprehensive introduction to the main ideas and techniques of quantum computation. It begins with the basics of classical theory of computation: NP-complete problems, Boolean circuits, Finite state machine, Turing machine and the idea of complexity of an algorithm. The general quantum formalism (pure states, qubit, superposition, evolution of quantum system, entanglement, multi-qubit system ...) and complex algorithm examples are also presented. Matlab is a well known in engineer academia as matrix computing environment, which makes it well suited for simulating quantum algorithms. The (Quantum Computer Toolbox) QCT is written entirely in the Matlab and m-files are listed in book's sections. There are certain data types that are implicitly defined by the QCT, including data types for qubit registers and transformations. The QCT contains many functions designed to mimic the actions of a quantum computer. In addition, the QCT contains several convenience functions designed to aid in the creation and modification of the data types used in algorithms. The main purposes of the QCT are for research involving Quantum Computation and as a teaching tool to aid in learning about Quantum Computing systems. The readers will learn to implement complex quantum algorithm (quantum teleportation and Deutsch, Grover, Shor algorithm) under Matlab environment (complete Matlab code examples).

Classical and Quantum Computation

Classical and Quantum Computation PDF Author: Alexei Yu. Kitaev
Publisher: American Mathematical Soc.
ISBN: 0821832298
Category : Computers
Languages : en
Pages : 274

Get Book

Book Description
An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.

An Introduction to Quantum Computing Algorithms

An Introduction to Quantum Computing Algorithms PDF Author: Arthur O. Pittenger
Publisher: Springer Science & Business Media
ISBN: 1461213908
Category : Computers
Languages : en
Pages : 149

Get Book

Book Description
In 1994 Peter Shor [65] published a factoring algorithm for a quantum computer that finds the prime factors of a composite integer N more efficiently than is possible with the known algorithms for a classical com puter. Since the difficulty of the factoring problem is crucial for the se curity of a public key encryption system, interest (and funding) in quan tum computing and quantum computation suddenly blossomed. Quan tum computing had arrived. The study of the role of quantum mechanics in the theory of computa tion seems to have begun in the early 1980s with the publications of Paul Benioff [6]' [7] who considered a quantum mechanical model of computers and the computation process. A related question was discussed shortly thereafter by Richard Feynman [35] who began from a different perspec tive by asking what kind of computer should be used to simulate physics. His analysis led him to the belief that with a suitable class of "quantum machines" one could imitate any quantum system.

Introduction to Quantum Algorithms

Introduction to Quantum Algorithms PDF Author: Johannes A. Buchmann
Publisher: American Mathematical Society
ISBN: 1470473984
Category : Mathematics
Languages : en
Pages : 391

Get Book

Book Description
Quantum algorithms are among the most important, interesting, and promising innovations in information and communication technology. They pose a major threat to today's cybersecurity and at the same time promise great benefits by potentially solving previously intractable computational problems with reasonable effort. The theory of quantum algorithms is based on advanced concepts from computer science, mathematics, and physics. Introduction to Quantum Algorithms offers a mathematically precise exploration of these concepts, accessible to those with a basic mathematical university education, while also catering to more experienced readers. This comprehensive book is suitable for self-study or as a textbook for one- or two-semester introductory courses on quantum computing algorithms. Instructors can tailor their approach to emphasize theoretical understanding and proofs or practical applications of quantum algorithms, depending on the course's goals and timeframe.