Author: S. N. Sivanandam
Publisher: Tata McGraw-Hill Education
ISBN: 9780070591127
Category : MATLAB.
Languages : en
Pages : 0
Book Description
Introduction to Neural Networks Using Matlab 6.0
Author: S. N. Sivanandam
Publisher: Tata McGraw-Hill Education
ISBN: 9780070591127
Category : MATLAB.
Languages : en
Pages : 0
Book Description
Publisher: Tata McGraw-Hill Education
ISBN: 9780070591127
Category : MATLAB.
Languages : en
Pages : 0
Book Description
An Introduction to Neural Network Methods for Differential Equations
Author: Neha Yadav
Publisher: Springer
ISBN: 9401798168
Category : Mathematics
Languages : en
Pages : 124
Book Description
This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed interest of the 1980s. A general introduction to neural networks and learning technologies is presented in Section III. This section also includes the description of the multilayer perceptron and its learning methods. In Section IV, the different neural network methods for solving differential equations are introduced, including discussion of the most recent developments in the field. Advanced students and researchers in mathematics, computer science and various disciplines in science and engineering will find this book a valuable reference source.
Publisher: Springer
ISBN: 9401798168
Category : Mathematics
Languages : en
Pages : 124
Book Description
This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed interest of the 1980s. A general introduction to neural networks and learning technologies is presented in Section III. This section also includes the description of the multilayer perceptron and its learning methods. In Section IV, the different neural network methods for solving differential equations are introduced, including discussion of the most recent developments in the field. Advanced students and researchers in mathematics, computer science and various disciplines in science and engineering will find this book a valuable reference source.
Neural Network Design
Author: Martin T. Hagan
Publisher:
ISBN: 9789812403766
Category : Neural networks (Computer science)
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9789812403766
Category : Neural networks (Computer science)
Languages : en
Pages :
Book Description
An Introduction to Neural Networks
Author: Kevin Gurney
Publisher: CRC Press
ISBN: 1482286998
Category : Computers
Languages : en
Pages : 148
Book Description
Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.
Publisher: CRC Press
ISBN: 1482286998
Category : Computers
Languages : en
Pages : 148
Book Description
Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.
Advances in VLSI, Communication, and Signal Processing
Author: David Harvey
Publisher: Springer Nature
ISBN: 9811568405
Category : Technology & Engineering
Languages : en
Pages : 726
Book Description
This book comprises select peer-reviewed papers from the International Conference on VLSI, Communication and Signal processing (VCAS) 2019, held at Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, India. The contents focus on latest research in different domains of electronics and communication engineering, in particular microelectronics and VLSI design, communication systems and networks, and signal and image processing. The book also discusses the emerging applications of novel tools and techniques in image, video and multimedia signal processing. This book will be useful to students, researchers and professionals working in the electronics and communication domain.
Publisher: Springer Nature
ISBN: 9811568405
Category : Technology & Engineering
Languages : en
Pages : 726
Book Description
This book comprises select peer-reviewed papers from the International Conference on VLSI, Communication and Signal processing (VCAS) 2019, held at Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, India. The contents focus on latest research in different domains of electronics and communication engineering, in particular microelectronics and VLSI design, communication systems and networks, and signal and image processing. The book also discusses the emerging applications of novel tools and techniques in image, video and multimedia signal processing. This book will be useful to students, researchers and professionals working in the electronics and communication domain.
Fundamentals of Neural Networks
Author: Fausett
Publisher: Prentice Hall
ISBN: 9780133367690
Category :
Languages : en
Pages : 300
Book Description
Publisher: Prentice Hall
ISBN: 9780133367690
Category :
Languages : en
Pages : 300
Book Description
MATLAB for Neuroscientists
Author: Pascal Wallisch
Publisher: Academic Press
ISBN: 0080923283
Category : Psychology
Languages : en
Pages : 407
Book Description
MATLAB for Neuroscientists: An Introduction to Scientific Computing in MATLAB is the first comprehensive teaching resource and textbook for the teaching of MATLAB in the Neurosciences and in Psychology. MATLAB is unique in that it can be used to learn the entire empirical and experimental process, including stimulus generation, experimental control, data collection, data analysis and modeling. Thus a wide variety of computational problems can be addressed in a single programming environment. The idea is to empower advanced undergraduates and beginning graduate students by allowing them to design and implement their own analytical tools. As students advance in their research careers, they will have achieved the fluency required to understand and adapt more specialized tools as opposed to treating them as "black boxes". Virtually all computational approaches in the book are covered by using genuine experimental data that are either collected as part of the lab project or were collected in the labs of the authors, providing the casual student with the look and feel of real data. In some cases, published data from classical papers are used to illustrate important concepts, giving students a computational understanding of critically important research. - The first comprehensive textbook on MATLAB with a focus for its application in neuroscience - Problem based educational approach with many examples from neuroscience and cognitive psychology using real data - Authors are award-winning educators with strong teaching experience
Publisher: Academic Press
ISBN: 0080923283
Category : Psychology
Languages : en
Pages : 407
Book Description
MATLAB for Neuroscientists: An Introduction to Scientific Computing in MATLAB is the first comprehensive teaching resource and textbook for the teaching of MATLAB in the Neurosciences and in Psychology. MATLAB is unique in that it can be used to learn the entire empirical and experimental process, including stimulus generation, experimental control, data collection, data analysis and modeling. Thus a wide variety of computational problems can be addressed in a single programming environment. The idea is to empower advanced undergraduates and beginning graduate students by allowing them to design and implement their own analytical tools. As students advance in their research careers, they will have achieved the fluency required to understand and adapt more specialized tools as opposed to treating them as "black boxes". Virtually all computational approaches in the book are covered by using genuine experimental data that are either collected as part of the lab project or were collected in the labs of the authors, providing the casual student with the look and feel of real data. In some cases, published data from classical papers are used to illustrate important concepts, giving students a computational understanding of critically important research. - The first comprehensive textbook on MATLAB with a focus for its application in neuroscience - Problem based educational approach with many examples from neuroscience and cognitive psychology using real data - Authors are award-winning educators with strong teaching experience
Efficient Processing of Deep Neural Networks
Author: Vivienne Sze
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Neural Networks in Chemical Reaction Dynamics
Author: Lionel Raff
Publisher: OUP USA
ISBN: 0199765650
Category : Computers
Languages : en
Pages : 303
Book Description
This monograph presents recent advances in neural network (NN) approaches and applications to chemical reaction dynamics. Topics covered include: (i) the development of ab initio potential-energy surfaces (PES) for complex multichannel systems using modified novelty sampling and feedforward NNs; (ii) methods for sampling the configuration space of critical importance, such as trajectory and novelty sampling methods and gradient fitting methods; (iii) parametrization of interatomic potential functions using a genetic algorithm accelerated with a NN; (iv) parametrization of analytic interatomic potential functions using NNs; (v) self-starting methods for obtaining analytic PES from ab inito electronic structure calculations using direct dynamics; (vi) development of a novel method, namely, combined function derivative approximation (CFDA) for simultaneous fitting of a PES and its corresponding force fields using feedforward neural networks; (vii) development of generalized PES using many-body expansions, NNs, and moiety energy approximations; (viii) NN methods for data analysis, reaction probabilities, and statistical error reduction in chemical reaction dynamics; (ix) accurate prediction of higher-level electronic structure energies (e.g. MP4 or higher) for large databases using NNs, lower-level (Hartree-Fock) energies, and small subsets of the higher-energy database; and finally (x) illustrative examples of NN applications to chemical reaction dynamics of increasing complexity starting from simple near equilibrium structures (vibrational state studies) to more complex non-adiabatic reactions. The monograph is prepared by an interdisciplinary group of researchers working as a team for nearly two decades at Oklahoma State University, Stillwater, OK with expertise in gas phase reaction dynamics; neural networks; various aspects of MD and Monte Carlo (MC) simulations of nanometric cutting, tribology, and material properties at nanoscale; scaling laws from atomistic to continuum; and neural networks applications to chemical reaction dynamics. It is anticipated that this emerging field of NN in chemical reaction dynamics will play an increasingly important role in MD, MC, and quantum mechanical studies in the years to come.
Publisher: OUP USA
ISBN: 0199765650
Category : Computers
Languages : en
Pages : 303
Book Description
This monograph presents recent advances in neural network (NN) approaches and applications to chemical reaction dynamics. Topics covered include: (i) the development of ab initio potential-energy surfaces (PES) for complex multichannel systems using modified novelty sampling and feedforward NNs; (ii) methods for sampling the configuration space of critical importance, such as trajectory and novelty sampling methods and gradient fitting methods; (iii) parametrization of interatomic potential functions using a genetic algorithm accelerated with a NN; (iv) parametrization of analytic interatomic potential functions using NNs; (v) self-starting methods for obtaining analytic PES from ab inito electronic structure calculations using direct dynamics; (vi) development of a novel method, namely, combined function derivative approximation (CFDA) for simultaneous fitting of a PES and its corresponding force fields using feedforward neural networks; (vii) development of generalized PES using many-body expansions, NNs, and moiety energy approximations; (viii) NN methods for data analysis, reaction probabilities, and statistical error reduction in chemical reaction dynamics; (ix) accurate prediction of higher-level electronic structure energies (e.g. MP4 or higher) for large databases using NNs, lower-level (Hartree-Fock) energies, and small subsets of the higher-energy database; and finally (x) illustrative examples of NN applications to chemical reaction dynamics of increasing complexity starting from simple near equilibrium structures (vibrational state studies) to more complex non-adiabatic reactions. The monograph is prepared by an interdisciplinary group of researchers working as a team for nearly two decades at Oklahoma State University, Stillwater, OK with expertise in gas phase reaction dynamics; neural networks; various aspects of MD and Monte Carlo (MC) simulations of nanometric cutting, tribology, and material properties at nanoscale; scaling laws from atomistic to continuum; and neural networks applications to chemical reaction dynamics. It is anticipated that this emerging field of NN in chemical reaction dynamics will play an increasingly important role in MD, MC, and quantum mechanical studies in the years to come.
An Introduction to Neural Information Retrieval
Author: Bhaskar Mitra
Publisher: Foundations and Trends (R) in Information Retrieval
ISBN: 9781680835328
Category :
Languages : en
Pages : 142
Book Description
Efficient Query Processing for Scalable Web Search will be a valuable reference for researchers and developers working on This tutorial provides an accessible, yet comprehensive, overview of the state-of-the-art of Neural Information Retrieval.
Publisher: Foundations and Trends (R) in Information Retrieval
ISBN: 9781680835328
Category :
Languages : en
Pages : 142
Book Description
Efficient Query Processing for Scalable Web Search will be a valuable reference for researchers and developers working on This tutorial provides an accessible, yet comprehensive, overview of the state-of-the-art of Neural Information Retrieval.