Introduction to Multidimensional Integrable Equations

Introduction to Multidimensional Integrable Equations PDF Author: B.G. Konopelchenko
Publisher: Springer Science & Business Media
ISBN: 1489911707
Category : Science
Languages : en
Pages : 298

Get Book Here

Book Description
The soliton represents one ofthe most important ofnonlinear phenomena in modern physics. It constitutes an essentially localizedentity with a set ofremarkable properties. Solitons are found in various areas of physics from gravitation and field theory, plasma physics, and nonlinear optics to solid state physics and hydrodynamics. Nonlinear equations which describe soliton phenomena are ubiquitous. Solitons and the equations which commonly describe them are also of great mathematical interest. Thus, the dis covery in 1967and subsequent development ofthe inversescattering transform method that provides the mathematical structure underlying soliton theory constitutes one of the most important developments in modern theoretical physics. The inversescattering transform method is now established as a very powerful tool in the investigation of nonlinear partial differential equations. The inverse scattering transform method, since its discoverysome two decades ago, has been applied to a great variety of nonlinear equations which arise in diverse fields of physics. These include ordinary differential equations, partial differential equations, integrodifferential, and differential-difference equations. The inverse scattering trans form method has allowed the investigation of these equations in a manner comparable to that of the Fourier method for linear equations.

Introduction to Multidimensional Integrable Equations

Introduction to Multidimensional Integrable Equations PDF Author: B.G. Konopelchenko
Publisher: Springer Science & Business Media
ISBN: 1489911707
Category : Science
Languages : en
Pages : 298

Get Book Here

Book Description
The soliton represents one ofthe most important ofnonlinear phenomena in modern physics. It constitutes an essentially localizedentity with a set ofremarkable properties. Solitons are found in various areas of physics from gravitation and field theory, plasma physics, and nonlinear optics to solid state physics and hydrodynamics. Nonlinear equations which describe soliton phenomena are ubiquitous. Solitons and the equations which commonly describe them are also of great mathematical interest. Thus, the dis covery in 1967and subsequent development ofthe inversescattering transform method that provides the mathematical structure underlying soliton theory constitutes one of the most important developments in modern theoretical physics. The inversescattering transform method is now established as a very powerful tool in the investigation of nonlinear partial differential equations. The inverse scattering transform method, since its discoverysome two decades ago, has been applied to a great variety of nonlinear equations which arise in diverse fields of physics. These include ordinary differential equations, partial differential equations, integrodifferential, and differential-difference equations. The inverse scattering trans form method has allowed the investigation of these equations in a manner comparable to that of the Fourier method for linear equations.

Introduction to Multidimensional Integrable Equations

Introduction to Multidimensional Integrable Equations PDF Author: B. G. Konopelchenko
Publisher:
ISBN: 9781489911711
Category :
Languages : en
Pages : 304

Get Book Here

Book Description


Geometric Methods in Physics XL

Geometric Methods in Physics XL PDF Author: Piotr Kielanowski
Publisher: Springer Nature
ISBN: 3031624076
Category : Geometry
Languages : en
Pages : 466

Get Book Here

Book Description
Zusammenfassung: This volume collects papers based on lectures given at the XL Workshop on Geometric Methods in Physics, held in Białowieża, Poland in July 2023. These chapters provide readers an overview of cutting-edge research in infinite-dimensional groups, integrable systems, quantum groups, Lie algebras and their generalizations and a wide variety of other areas. Specific topics include: Yang-Baxter equation The restricted Siegel disc and restricted Grassmannian Geometric and deformation quantization Degenerate integrability Lie algebroids and groupoids Skew braces Geometric Methods in Physics XL will be a valuable resource for mathematicians and physicists interested in recent developments at the intersection of these areas

Cosmology and Gravitation II

Cosmology and Gravitation II PDF Author: Marius Paul Bernard Novella
Publisher: Atlantica Séguier Frontières
ISBN: 9782863321928
Category : Cosmology
Languages : en
Pages : 596

Get Book Here

Book Description


Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 940

Get Book Here

Book Description


Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations

Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations PDF Author: Pham Loi Vu
Publisher: CRC Press
ISBN: 100087205X
Category : Mathematics
Languages : en
Pages : 453

Get Book Here

Book Description
Inverse Scattering Problems and Their Applications to Nonlinear Integrable Equations, Second Edition is devoted to inverse scattering problems (ISPs) for differential equations and their applications to nonlinear evolution equations (NLEEs). The book is suitable for anyone who has a mathematical background and interest in functional analysis, differential equations, and equations of mathematical physics. This book is intended for a wide community working with ISPs and their applications. There is an especially strong traditional community in mathematical physics. In this monograph, the problems are presented step-by-step, and detailed proofs are given for considered problems to make the topics more accessible for students who are approaching them for the first time. New to the Second Edition All new chapter dealing with the Bäcklund transformations between a common solution of both linear equations in the Lax pair and the solution of the associated IBVP for NLEEs on the half-line Updated references and concluding remarks Features Solving the direct and ISP, then solving the associated initial value problem (IVP) or initial-boundary value problem (IBVP) for NLEEs are carried out step-by-step. The unknown boundary values are calculated with the help of the Lax (generalized) equations, then the time-dependent scattering data (SD) are expressed in terms of preassigned initial and boundary conditions. Thereby, the potential functions are recovered uniquely in terms of the given initial and calculated boundary conditions. The unique solvability of the ISP is proved and the SD of the scattering problem is described completely. The considered ISPs are well-solved. The ISPs are set up appropriately for constructing the Bӓckhund transformations (BTs) for solutions of associated IBVPs or IVPs for NLEEs. The procedure for finding a BT for the IBVP for NLEEs on the half-line differs from the one used for obtaining a BT for non-linear differential equations defined in the whole space. The interrelations between the ISPs and the constructed BTs are established to become new powerful unified transformations (UTs) for solving IBVPs or IVPs for NLEEs, that can be used in different areas of physics and mechanics. The application of the UTs is consistent and efficiently embedded in the scheme of the associated ISP.

Discrete Integrable Geometry and Physics

Discrete Integrable Geometry and Physics PDF Author: Alexander I. Bobenko
Publisher: Clarendon Press
ISBN: 9780198501602
Category : Mathematics
Languages : en
Pages : 466

Get Book Here

Book Description
Recent interactions between the fields of geometry, classical and quantum dynamical systems, and visualization of geometric objects such as curves and surfaces have led to the observation that most concepts of surface theory and of the theory of integrable systems have natural discreteanalogues. These are characterized by the property that the corresponding difference equations are integrable, and has led in turn to some important applications in areas of condensed matter physics and quantum field theory, amongst others. The book combines the efforts of a distinguished team ofauthors from various fields in mathematics and physics in an effort to provide an overview of the subject. The mathematical concepts of discrete geometry and discrete integrable systems are firstly presented as fundamental and valuable theories in themselves. In the following part these concepts areput into the context of classical and quantum dynamics.

Integrable Hamiltonian Hierarchies

Integrable Hamiltonian Hierarchies PDF Author: Vladimir Gerdjikov
Publisher: Springer
ISBN: 3540770542
Category : Science
Languages : en
Pages : 645

Get Book Here

Book Description
This book presents a detailed derivation of the spectral properties of the Recursion Operators allowing one to derive all the fundamental properties of the soliton equations and to study their hierarchies.

SIDE III -- Symmetries and Integrability of Difference Equations

SIDE III -- Symmetries and Integrability of Difference Equations PDF Author: D. Levi
Publisher: American Mathematical Soc.
ISBN: 0821821288
Category : Mathematics
Languages : en
Pages : 462

Get Book Here

Book Description
This volume contains the proceedings of the third meeting on "Symmetries and Integrability of Difference Equations" (SIDE III). The collection includes original results not published elsewhere and articles that give a rigorous but concise overview of their subject, and provides a complete description of the state of the art. Research in the field of difference equations-often referred to more generally as discrete systems-has undergone impressive development in recent years. In this collection the reader finds the most important new developments in a number of areas, including: Lie-type symmetries of differential-difference and difference-difference equations, integrability of fully discrete systems such as cellular automata, the connection between integrability and discrete geometry, the isomonodromy approach to discrete spectral problems and related discrete Painlevé equations, difference and q-difference equations and orthogonal polynomials, difference equations and quantum groups, and integrability and chaos in discrete-time dynamical systems. The proceedings will be valuable to mathematicians and theoretical physicists interested in the mathematical aspects and/or in the physical applications of discrete nonlinear dynamics, with special emphasis on the systems that can be integrated by analytic methods or at least admit special explicit solutions. The research in this volume will also be of interest to engineers working in discrete dynamics as well as to theoretical biologists and economists.

Chinese Journal of Mathematics

Chinese Journal of Mathematics PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description