Author: Toyoki Koga
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 324
Book Description
Introduction to Kinetic Theory Stochastic Processes in Gaseous Systems
Author: Toyoki Koga
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 324
Book Description
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 324
Book Description
Statistical Mechanics, Kinetic theory, and Stochastic Processes
Author: C.V. Heer
Publisher: Elsevier
ISBN: 0323144411
Category : Science
Languages : en
Pages : 619
Book Description
Statistical Mechanics, Kinetic Theory, and Stochastic Processes presents the statistical aspects of physics as a "living and dynamic" subject. In order to provide an elementary introduction to kinetic theory, physical systems in which particle-particle interaction can be neglected are considered. Transport phenomena in the free-molecular flow region for gases and the transport of thermal radiation are discussed. Discrete random processes such as random walk, binomial and Poisson distributions, and throwing of dice are studied by means of the characteristic function. Comprised of 11 chapters, this book begins with an introduction to the mass point gas as well as some elementary properties of space and velocity distributions. The discussion then turns to radiation and its interaction with an atom; probability, statistics, and conditional probability; intermolecular interactions; transport phenomena; and statistical thermodynamics. Molecular systems at low densities are also considered, together with non-ideal and real gases; liquids and solids; and stochastic processes, noise, and fluctuations. In particular, the response of atoms and molecules to perturbations and scattering by crystals, liquids, and high-pressure gases are examined. This monograph will be useful for undergraduate students, practitioners, and researchers in physics.
Publisher: Elsevier
ISBN: 0323144411
Category : Science
Languages : en
Pages : 619
Book Description
Statistical Mechanics, Kinetic Theory, and Stochastic Processes presents the statistical aspects of physics as a "living and dynamic" subject. In order to provide an elementary introduction to kinetic theory, physical systems in which particle-particle interaction can be neglected are considered. Transport phenomena in the free-molecular flow region for gases and the transport of thermal radiation are discussed. Discrete random processes such as random walk, binomial and Poisson distributions, and throwing of dice are studied by means of the characteristic function. Comprised of 11 chapters, this book begins with an introduction to the mass point gas as well as some elementary properties of space and velocity distributions. The discussion then turns to radiation and its interaction with an atom; probability, statistics, and conditional probability; intermolecular interactions; transport phenomena; and statistical thermodynamics. Molecular systems at low densities are also considered, together with non-ideal and real gases; liquids and solids; and stochastic processes, noise, and fluctuations. In particular, the response of atoms and molecules to perturbations and scattering by crystals, liquids, and high-pressure gases are examined. This monograph will be useful for undergraduate students, practitioners, and researchers in physics.
Introduction to Feynman Diagrams
Author: S. M. Bilenky
Publisher: Elsevier
ISBN: 1483187217
Category : Science
Languages : en
Pages : 197
Book Description
Introduction to Feynman Diagrams provides Feynman diagram techniques and methods for calculating quantities measured experimentally. The book discusses topics Feynman diagrams intended for experimental physicists. Topics presented include methods for calculating the matrix elements (by perturbation theory) and the basic rules for constructing Feynman diagrams; techniques for calculating cross sections and polarizations; processes in which both leptons and hadrons take part; and the electromagnetic and weak form factors of nucleons. Experimental physicists and graduate students of physics will find value in the book.
Publisher: Elsevier
ISBN: 1483187217
Category : Science
Languages : en
Pages : 197
Book Description
Introduction to Feynman Diagrams provides Feynman diagram techniques and methods for calculating quantities measured experimentally. The book discusses topics Feynman diagrams intended for experimental physicists. Topics presented include methods for calculating the matrix elements (by perturbation theory) and the basic rules for constructing Feynman diagrams; techniques for calculating cross sections and polarizations; processes in which both leptons and hadrons take part; and the electromagnetic and weak form factors of nucleons. Experimental physicists and graduate students of physics will find value in the book.
Kinetic Theory
Author: R.L. Liboff
Publisher: Springer Science & Business Media
ISBN: 0387217754
Category : Science
Languages : en
Pages : 587
Book Description
This book goes beyond the scope of other works in the field with its thorough treatment of applications in a wide variety of disciplines. The third edition features a new section on constants of motion and symmetry and a new appendix on the Lorentz-Legendre expansion.
Publisher: Springer Science & Business Media
ISBN: 0387217754
Category : Science
Languages : en
Pages : 587
Book Description
This book goes beyond the scope of other works in the field with its thorough treatment of applications in a wide variety of disciplines. The third edition features a new section on constants of motion and symmetry and a new appendix on the Lorentz-Legendre expansion.
Introduction to Gas Lasers: Population Inversion Mechanisms
Author: Colin S. Willett
Publisher: Elsevier
ISBN: 1483158799
Category : Technology & Engineering
Languages : en
Pages : 547
Book Description
Introduction to Gas Lasers: Population Inversion Mechanisms focuses on important processes in gas discharge lasers and basic atomic collision processes that operate in a gas laser. Organized into six chapters, this book first discusses the historical development and basic principles of gas lasers. Subsequent chapters describe the selective excitation processes in gas discharges and the specific neutral, ionized and molecular laser systems. This book will be a valuable reference on the behavior of gas-discharge lasers to anyone already in the field.
Publisher: Elsevier
ISBN: 1483158799
Category : Technology & Engineering
Languages : en
Pages : 547
Book Description
Introduction to Gas Lasers: Population Inversion Mechanisms focuses on important processes in gas discharge lasers and basic atomic collision processes that operate in a gas laser. Organized into six chapters, this book first discusses the historical development and basic principles of gas lasers. Subsequent chapters describe the selective excitation processes in gas discharges and the specific neutral, ionized and molecular laser systems. This book will be a valuable reference on the behavior of gas-discharge lasers to anyone already in the field.
Introduction to General Relativity
Author: H. A. Atwater
Publisher: Elsevier
ISBN: 1483160424
Category : Science
Languages : en
Pages : 233
Book Description
Introduction to General Relativity is an introductory text on the concepts and modes of calculation used in general relativity. Topics covered range from Newton's laws of motion and the Galilean transformation to tensor analysis, equations of motion of free particles, electromagnetism, and gravitational fields and waves. Solutions of the field equations are also given. The emphasis is on the actual performance of relativistic calculations, rather than on mathematical rigor or exhaustive completeness. This volume is comprised of nine chapters and begins with an overview of the theory of relativity, which includes special relativity and general relativity. The discussion then turns to Newton's laws of motion and the Galilean transformation, electromagnetism and the Galilean transformation, and the Lorentz transformation. Subsequent chapters explore tensor analysis; equations of motion of free particles; gravitational fields and waves; relativity in cosmology; and unified theories and quantized theories of general relativity. The final chapter is devoted to Minkowski's coordinates and orthogonal transformations. This book will be a valuable resource for students of physics.
Publisher: Elsevier
ISBN: 1483160424
Category : Science
Languages : en
Pages : 233
Book Description
Introduction to General Relativity is an introductory text on the concepts and modes of calculation used in general relativity. Topics covered range from Newton's laws of motion and the Galilean transformation to tensor analysis, equations of motion of free particles, electromagnetism, and gravitational fields and waves. Solutions of the field equations are also given. The emphasis is on the actual performance of relativistic calculations, rather than on mathematical rigor or exhaustive completeness. This volume is comprised of nine chapters and begins with an overview of the theory of relativity, which includes special relativity and general relativity. The discussion then turns to Newton's laws of motion and the Galilean transformation, electromagnetism and the Galilean transformation, and the Lorentz transformation. Subsequent chapters explore tensor analysis; equations of motion of free particles; gravitational fields and waves; relativity in cosmology; and unified theories and quantized theories of general relativity. The final chapter is devoted to Minkowski's coordinates and orthogonal transformations. This book will be a valuable resource for students of physics.
Gaseous Electronics and Gas Lasers
Author: Blake E. Cherrington
Publisher: Elsevier
ISBN: 1483278964
Category : Science
Languages : en
Pages : 283
Book Description
Gaseous Electronics and Gas Lasers deals with the fundamental principles and methods of analysis of weakly ionized gas discharges and gas lasers. The emphasis is on processes occurring in gas discharges and the analytical methods used to calculate important process rates. Detailed analyses of a variety of gas discharges are presented using atomic, ionic, and gas lasers as primary illustrations. Comprised of 12 chapters, this book begins with some initial categorization of gas discharge species and an overview of their interactions. The discussion then turns to an elementary theory of a gas discharge; inelastic collisions; distribution functions and the Boltzmann equation; and transport coefficients. Subsequent chapters focus on the fluid equations; electron-density decay processes; excited species; atomic neutral gas lasers; molecular gas lasers; and ion lasers. The important electron loss processes that determine the behavior of a plasma when the source and loss terms balance are also examined. This monograph will be of value to graduate students, practitioners, and researchers in the fields of physics and engineering, as well as to professionals interested in working with weakly ionized discharges.
Publisher: Elsevier
ISBN: 1483278964
Category : Science
Languages : en
Pages : 283
Book Description
Gaseous Electronics and Gas Lasers deals with the fundamental principles and methods of analysis of weakly ionized gas discharges and gas lasers. The emphasis is on processes occurring in gas discharges and the analytical methods used to calculate important process rates. Detailed analyses of a variety of gas discharges are presented using atomic, ionic, and gas lasers as primary illustrations. Comprised of 12 chapters, this book begins with some initial categorization of gas discharge species and an overview of their interactions. The discussion then turns to an elementary theory of a gas discharge; inelastic collisions; distribution functions and the Boltzmann equation; and transport coefficients. Subsequent chapters focus on the fluid equations; electron-density decay processes; excited species; atomic neutral gas lasers; molecular gas lasers; and ion lasers. The important electron loss processes that determine the behavior of a plasma when the source and loss terms balance are also examined. This monograph will be of value to graduate students, practitioners, and researchers in the fields of physics and engineering, as well as to professionals interested in working with weakly ionized discharges.
Kinetic Theory
Author: S. G. Brush
Publisher: Elsevier
ISBN: 1483145859
Category : Science
Languages : en
Pages : 294
Book Description
Kinetic Theory, Volume 3: The Chapman-Enskog Solution of the Transport Equation for Moderately Dense Gases describes the Chapman-Enskog solution of the transport equation for moderately dense gases. Topics covered range from the propagation of sound in monatomic gases to the kinetic theory of simple and composite monatomic gases and generalizations of the theory to higher densities. The application of kinetic theory to the determination of intermolecular forces is also discussed. This volume is divided into two sections and begins with an introduction to the work of Hilbert, Chapman, and Enskog that led to the formulation of the Chapman-Enskog theory. The Chapman-Enskog results are then compared with those of earlier theories with respect to viscosity, heat conduction, diffusion, and thermal diffusion. Subsequent chapters focus on alternatives to the Chapman-Enskog method and some mathematical problems; foundations of the kinetic theory of gases; and kinetic theory of processes in dilute gases and of heat conduction, viscosity, and self-diffusion in compressed gases and liquids. This book should be of interest to graduate students and others undertaking research in kinetic theory.
Publisher: Elsevier
ISBN: 1483145859
Category : Science
Languages : en
Pages : 294
Book Description
Kinetic Theory, Volume 3: The Chapman-Enskog Solution of the Transport Equation for Moderately Dense Gases describes the Chapman-Enskog solution of the transport equation for moderately dense gases. Topics covered range from the propagation of sound in monatomic gases to the kinetic theory of simple and composite monatomic gases and generalizations of the theory to higher densities. The application of kinetic theory to the determination of intermolecular forces is also discussed. This volume is divided into two sections and begins with an introduction to the work of Hilbert, Chapman, and Enskog that led to the formulation of the Chapman-Enskog theory. The Chapman-Enskog results are then compared with those of earlier theories with respect to viscosity, heat conduction, diffusion, and thermal diffusion. Subsequent chapters focus on alternatives to the Chapman-Enskog method and some mathematical problems; foundations of the kinetic theory of gases; and kinetic theory of processes in dilute gases and of heat conduction, viscosity, and self-diffusion in compressed gases and liquids. This book should be of interest to graduate students and others undertaking research in kinetic theory.
A Method for Studying Model Hamiltonians
Author: N. N. Bogolyubov
Publisher: Elsevier
ISBN: 1483148777
Category : Science
Languages : en
Pages : 181
Book Description
A Method for Studying Model Hamiltonians: A Minimax Principle for Problems in Statistical Physics centers on methods for solving certain problems in statistical physics which contain four-fermion interaction. Organized into four chapters, this book begins with a presentation of the proof of the asymptotic relations for the many-time correlation functions. Chapter 2 details the construction of a proof of the generalized asymptotic relations for the many-time correlation averages. Chapter 3 explains the correlation functions for systems with four-fermion negative interaction. The last chapter shows the model systems with positive and negative interaction components.
Publisher: Elsevier
ISBN: 1483148777
Category : Science
Languages : en
Pages : 181
Book Description
A Method for Studying Model Hamiltonians: A Minimax Principle for Problems in Statistical Physics centers on methods for solving certain problems in statistical physics which contain four-fermion interaction. Organized into four chapters, this book begins with a presentation of the proof of the asymptotic relations for the many-time correlation functions. Chapter 2 details the construction of a proof of the generalized asymptotic relations for the many-time correlation averages. Chapter 3 explains the correlation functions for systems with four-fermion negative interaction. The last chapter shows the model systems with positive and negative interaction components.
Kinetic Theory of Nonideal Gases and Nonideal Plasmas
Author: Yu L Klimontovich
Publisher: Elsevier
ISBN: 1483145441
Category : Science
Languages : en
Pages : 329
Book Description
Kinetic Theory of Nonideal Gases and Nonideal Plasmas presents the fundamental aspects of the kinetic theory of gases and plasmas. The book consists of three parts, which attempts to present some of the ideas, methods and applications in the study of the kinetic processes in nonideal gases and plasmas. The first part focuses on the classical kinetic theory of nonideal gases. The second part discusses the classical kinetic theory of fully ionized plasmas. The last part is devoted to the quantum kinetic theory of nonideal gases and plasmas. A concluding chapter is included, which presents a short account of the kinetic theory of chemically reacting systems and of partially ionized plasmas, in order to espouse further studies in the field. Physicists, scientific researchers, professors, and graduate students in various fields will find the text of good use.
Publisher: Elsevier
ISBN: 1483145441
Category : Science
Languages : en
Pages : 329
Book Description
Kinetic Theory of Nonideal Gases and Nonideal Plasmas presents the fundamental aspects of the kinetic theory of gases and plasmas. The book consists of three parts, which attempts to present some of the ideas, methods and applications in the study of the kinetic processes in nonideal gases and plasmas. The first part focuses on the classical kinetic theory of nonideal gases. The second part discusses the classical kinetic theory of fully ionized plasmas. The last part is devoted to the quantum kinetic theory of nonideal gases and plasmas. A concluding chapter is included, which presents a short account of the kinetic theory of chemically reacting systems and of partially ionized plasmas, in order to espouse further studies in the field. Physicists, scientific researchers, professors, and graduate students in various fields will find the text of good use.