Interior-point Polynomial Algorithms in Convex Programming

Interior-point Polynomial Algorithms in Convex Programming PDF Author: Yurii Nesterov
Publisher: SIAM
ISBN: 9781611970791
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.

Lectures on Modern Convex Optimization

Lectures on Modern Convex Optimization PDF Author: Aharon Ben-Tal
Publisher: SIAM
ISBN: 0898714915
Category : Technology & Engineering
Languages : en
Pages : 500

Get Book Here

Book Description
Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

Algorithms for Convex Optimization

Algorithms for Convex Optimization PDF Author: Nisheeth K. Vishnoi
Publisher: Cambridge University Press
ISBN: 1108633994
Category : Computers
Languages : en
Pages : 314

Get Book Here

Book Description
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.

A Mathematical View of Interior-point Methods in Convex Optimization

A Mathematical View of Interior-point Methods in Convex Optimization PDF Author: James Renegar
Publisher: SIAM
ISBN: 9780898718812
Category : Mathematics
Languages : en
Pages : 124

Get Book Here

Book Description
Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

Primal-dual Interior-Point Methods

Primal-dual Interior-Point Methods PDF Author: Stephen J. Wright
Publisher: SIAM
ISBN: 9781611971453
Category : Interior-point methods
Languages : en
Pages : 309

Get Book Here

Book Description
In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.

Interior Point Algorithms

Interior Point Algorithms PDF Author: Yinyu Ye
Publisher: John Wiley & Sons
ISBN: 1118030958
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
The first comprehensive review of the theory and practice of one oftoday's most powerful optimization techniques. The explosive growth of research into and development of interiorpoint algorithms over the past two decades has significantlyimproved the complexity of linear programming and yielded some oftoday's most sophisticated computing techniques. This book offers acomprehensive and thorough treatment of the theory, analysis, andimplementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basicand advanced aspects of the subject. Beginning with an overview offundamental mathematical procedures, Professor Yinyu Ye movesswiftly on to in-depth explorations of numerous computationalproblems and the algorithms that have been developed to solve them.An indispensable text/reference for students and researchers inapplied mathematics, computer science, operations research,management science, and engineering, Interior Point Algorithms: * Derives various complexity results for linear and convexprogramming * Emphasizes interior point geometry and potential theory * Covers state-of-the-art results for extension, implementation,and other cutting-edge computational techniques * Explores the hottest new research topics, including nonlinearprogramming and nonconvex optimization.

Interior Point Approach to Linear, Quadratic and Convex Programming

Interior Point Approach to Linear, Quadratic and Convex Programming PDF Author: D. den Hertog
Publisher: Springer Science & Business Media
ISBN: 9401111340
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description
This book describes the rapidly developing field of interior point methods (IPMs). An extensive analysis is given of path-following methods for linear programming, quadratic programming and convex programming. These methods, which form a subclass of interior point methods, follow the central path, which is an analytic curve defined by the problem. Relatively simple and elegant proofs for polynomiality are given. The theory is illustrated using several explicit examples. Moreover, an overview of other classes of IPMs is given. It is shown that all these methods rely on the same notion as the path-following methods: all these methods use the central path implicitly or explicitly as a reference path to go to the optimum. For specialists in IPMs as well as those seeking an introduction to IPMs. The book is accessible to any mathematician with basic mathematical programming knowledge.

Aspects of Semidefinite Programming

Aspects of Semidefinite Programming PDF Author: E. de Klerk
Publisher: Springer Science & Business Media
ISBN: 1402005474
Category : Computers
Languages : en
Pages : 287

Get Book Here

Book Description
Semidefinite programming has been described as linear programming for the year 2000. It is an exciting new branch of mathematical programming, due to important applications in control theory, combinatorial optimization and other fields. Moreover, the successful interior point algorithms for linear programming can be extended to semidefinite programming. In this monograph the basic theory of interior point algorithms is explained. This includes the latest results on the properties of the central path as well as the analysis of the most important classes of algorithms. Several "classic" applications of semidefinite programming are also described in detail. These include the Lovász theta function and the MAX-CUT approximation algorithm by Goemans and Williamson. Audience: Researchers or graduate students in optimization or related fields, who wish to learn more about the theory and applications of semidefinite programming.

High Performance Optimization

High Performance Optimization PDF Author: Hans Frenk
Publisher: Springer Science & Business Media
ISBN: 9780792360131
Category : Language Arts & Disciplines
Languages : en
Pages : 506

Get Book Here

Book Description
For a long time the techniques of solving linear optimization (LP) problems improved only marginally. Fifteen years ago, however, a revolutionary discovery changed everything. A new `golden age' for optimization started, which is continuing up to the current time. What is the cause of the excitement? Techniques of linear programming formed previously an isolated body of knowledge. Then suddenly a tunnel was built linking it with a rich and promising land, part of which was already cultivated, part of which was completely unexplored. These revolutionary new techniques are now applied to solve conic linear problems. This makes it possible to model and solve large classes of essentially nonlinear optimization problems as efficiently as LP problems. This volume gives an overview of the latest developments of such `High Performance Optimization Techniques'. The first part is a thorough treatment of interior point methods for semidefinite programming problems. The second part reviews today's most exciting research topics and results in the area of convex optimization. Audience: This volume is for graduate students and researchers who are interested in modern optimization techniques.

Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Get Book Here

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.