Interface Engineering of Capacitive Micromachined Ultrasonic Transducers for Medical Applications

Interface Engineering of Capacitive Micromachined Ultrasonic Transducers for Medical Applications PDF Author: Der-Song Lin
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 168

Get Book Here

Book Description
Capacitive micromachined ultrasonic transducers (CMUTs), have been widely studied in academia and industry over the last decade. CMUTs provide many benefits over traditional piezoelectric transducers including improvement in performance through wide bandwidth, and ease of electronics integration, with the potential to batch fabricate very large 2D arrays with low-cost and high-yield. Though many aspects of CMUT technology have been studied over the years, packaging the CMUT into a fully practical system has not been thoroughly explored. Two important interfaces of packaging that this thesis explores are device encapsulation (the interface between CMUTs and patients) and full electronic integration of large scale 2D arrays (the interface between CMUTs and electronics). In the first part of the work, I investigate the requirements for the CMUT encapsulation. For medical usage, encapsulation is needed to electrically insulate the device, mechanically protect the device, and maintain transducer performance, especially the access of the ultrasound energy. While hermetic sealing can protect many other MEMS devices, CMUTs require mechanical interaction to a fluid, which makes fulfilling the previous criterion very challenging. The proposed solution is to use a viscoelastic material with the glass-transition-temperature lower than room temperature, such as Polydimethylsiloxane (PDMS), to preserve the CMUT static and dynamic performance. Experimental implementation of the encapsulated imaging CMUT arrays shows the device performance was maintained; 95 % of efficiency, 85% of the maximum output pressure, and 91% of the fractional bandwidth (FBW) can be preserved. A viscoelastic finite element model was also developed and shows the performance effects of the coating can be accurately predicted. Four designs, providing acoustic crosstalk suppression, flexible substrate, lens focusing, and blood flow monitoring using PDMS layer were also demonstrated. The second part of the work, presents contributions towards the electronic integration and packaging of large-area 2-D arrays. A very large 2D array is appealing for it can enable advanced novel imaging applications, such as a reconfigurable array, and a compression plate for breast cancer screening. With these goals in mind, I developed the first large-scale fully populated and integrated 2D CMUTs array with 32 by 192 elements. In this study, I demonstrate a flexible and reliable integration approach by successfully combining a simple UBM preparation technique and a CMUTs-interposer-ASICs sandwich design. The results show high shear strength of the UBM (26.5 g), 100% yield of the interconnections, and excellent CMUT resonance uniformity ([lowercase Sigma] = 0.02 MHz). As demonstrated, this allows for a large-scale assembly of a tile-able array by using an interposer. Interface engineering is crucial towards the development of CMUTs into a practical ultrasound system. With the advances in encapsulation technique with a viscoelastic polymer and the combination of the UBM technique to the TSV fabrication for electronics integration, a fully integrated CMUT system can be realized.

Interface Engineering of Capacitive Micromachined Ultrasonic Transducers for Medical Applications

Interface Engineering of Capacitive Micromachined Ultrasonic Transducers for Medical Applications PDF Author: Der-Song Lin
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 168

Get Book Here

Book Description
Capacitive micromachined ultrasonic transducers (CMUTs), have been widely studied in academia and industry over the last decade. CMUTs provide many benefits over traditional piezoelectric transducers including improvement in performance through wide bandwidth, and ease of electronics integration, with the potential to batch fabricate very large 2D arrays with low-cost and high-yield. Though many aspects of CMUT technology have been studied over the years, packaging the CMUT into a fully practical system has not been thoroughly explored. Two important interfaces of packaging that this thesis explores are device encapsulation (the interface between CMUTs and patients) and full electronic integration of large scale 2D arrays (the interface between CMUTs and electronics). In the first part of the work, I investigate the requirements for the CMUT encapsulation. For medical usage, encapsulation is needed to electrically insulate the device, mechanically protect the device, and maintain transducer performance, especially the access of the ultrasound energy. While hermetic sealing can protect many other MEMS devices, CMUTs require mechanical interaction to a fluid, which makes fulfilling the previous criterion very challenging. The proposed solution is to use a viscoelastic material with the glass-transition-temperature lower than room temperature, such as Polydimethylsiloxane (PDMS), to preserve the CMUT static and dynamic performance. Experimental implementation of the encapsulated imaging CMUT arrays shows the device performance was maintained; 95 % of efficiency, 85% of the maximum output pressure, and 91% of the fractional bandwidth (FBW) can be preserved. A viscoelastic finite element model was also developed and shows the performance effects of the coating can be accurately predicted. Four designs, providing acoustic crosstalk suppression, flexible substrate, lens focusing, and blood flow monitoring using PDMS layer were also demonstrated. The second part of the work, presents contributions towards the electronic integration and packaging of large-area 2-D arrays. A very large 2D array is appealing for it can enable advanced novel imaging applications, such as a reconfigurable array, and a compression plate for breast cancer screening. With these goals in mind, I developed the first large-scale fully populated and integrated 2D CMUTs array with 32 by 192 elements. In this study, I demonstrate a flexible and reliable integration approach by successfully combining a simple UBM preparation technique and a CMUTs-interposer-ASICs sandwich design. The results show high shear strength of the UBM (26.5 g), 100% yield of the interconnections, and excellent CMUT resonance uniformity ([lowercase Sigma] = 0.02 MHz). As demonstrated, this allows for a large-scale assembly of a tile-able array by using an interposer. Interface engineering is crucial towards the development of CMUTs into a practical ultrasound system. With the advances in encapsulation technique with a viscoelastic polymer and the combination of the UBM technique to the TSV fabrication for electronics integration, a fully integrated CMUT system can be realized.

Interface Engineering of Capacitive Micromachined Ultrasonic Transducers for Medical Applications

Interface Engineering of Capacitive Micromachined Ultrasonic Transducers for Medical Applications PDF Author: Der-Song Lin
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Capacitive micromachined ultrasonic transducers (CMUTs), have been widely studied in academia and industry over the last decade. CMUTs provide many benefits over traditional piezoelectric transducers including improvement in performance through wide bandwidth, and ease of electronics integration, with the potential to batch fabricate very large 2D arrays with low-cost and high-yield. Though many aspects of CMUT technology have been studied over the years, packaging the CMUT into a fully practical system has not been thoroughly explored. Two important interfaces of packaging that this thesis explores are device encapsulation (the interface between CMUTs and patients) and full electronic integration of large scale 2D arrays (the interface between CMUTs and electronics). In the first part of the work, I investigate the requirements for the CMUT encapsulation. For medical usage, encapsulation is needed to electrically insulate the device, mechanically protect the device, and maintain transducer performance, especially the access of the ultrasound energy. While hermetic sealing can protect many other MEMS devices, CMUTs require mechanical interaction to a fluid, which makes fulfilling the previous criterion very challenging. The proposed solution is to use a viscoelastic material with the glass-transition-temperature lower than room temperature, such as Polydimethylsiloxane (PDMS), to preserve the CMUT static and dynamic performance. Experimental implementation of the encapsulated imaging CMUT arrays shows the device performance was maintained; 95 % of efficiency, 85% of the maximum output pressure, and 91% of the fractional bandwidth (FBW) can be preserved. A viscoelastic finite element model was also developed and shows the performance effects of the coating can be accurately predicted. Four designs, providing acoustic crosstalk suppression, flexible substrate, lens focusing, and blood flow monitoring using PDMS layer were also demonstrated. The second part of the work, presents contributions towards the electronic integration and packaging of large-area 2-D arrays. A very large 2D array is appealing for it can enable advanced novel imaging applications, such as a reconfigurable array, and a compression plate for breast cancer screening. With these goals in mind, I developed the first large-scale fully populated and integrated 2D CMUTs array with 32 by 192 elements. In this study, I demonstrate a flexible and reliable integration approach by successfully combining a simple UBM preparation technique and a CMUTs-interposer-ASICs sandwich design. The results show high shear strength of the UBM (26.5 g), 100% yield of the interconnections, and excellent CMUT resonance uniformity ([lowercase Sigma] = 0.02 MHz). As demonstrated, this allows for a large-scale assembly of a tile-able array by using an interposer. Interface engineering is crucial towards the development of CMUTs into a practical ultrasound system. With the advances in encapsulation technique with a viscoelastic polymer and the combination of the UBM technique to the TSV fabrication for electronics integration, a fully integrated CMUT system can be realized.

Medical Imaging

Medical Imaging PDF Author: Troy Farncombe
Publisher: CRC Press
ISBN: 1351831755
Category : Science
Languages : en
Pages : 857

Get Book Here

Book Description
The book has two intentions. First, it assembles the latest research in the field of medical imaging technology in one place. Detailed descriptions of current state-of-the-art medical imaging systems (comprised of x-ray CT, MRI, ultrasound, and nuclear medicine) and data processing techniques are discussed. Information is provided that will give interested engineers and scientists a solid foundation from which to build with additional resources. Secondly, it exposes the reader to myriad applications that medical imaging technology has enabled.

Fabrication of Capacitive Micromachined Ultrasonic Transducers Based on Adhesive Wafer Bonding

Fabrication of Capacitive Micromachined Ultrasonic Transducers Based on Adhesive Wafer Bonding PDF Author: Zhenhao Li
Publisher:
ISBN:
Category : Electric apparatus and appliances
Languages : en
Pages : 107

Get Book Here

Book Description
Capacitive micromachined ultrasonic transducers (CMUTs) can be used for medical imaging, non-destructive testing or medical treatment applications. It can also be used as gravimetric sensors for gas sensing or immersion bio-sensing. Although various CMUT fabrication methods have been reported, there are still many challenges to address. Conventional fabrication methods can be categorized as either surface micromachining or the wafer bonding method. These methods have design trade-offs and limitations associated with process complexity, structural parameter optimization and wafer materials selection. For example, surface micromachining approaches can suffer from complicated fabrication processes. In addition, structural parameters cannot be fully optimized due to feasibility concerns during fabrication. In contrast, the development of wafer bonding techniques enabled CMUTs to be fabricated in a straightforward way and structural parameters can be easily optimized when compared with a surface micromachining approach. However, the yield of the traditional wafer bonded CMUTs is very sensitive to contaminations and the surface quality at the bonding interface. Although the difficulties of the wafer bonding process are not always reported, they definitely exist for every researcher who wants to fabricate their own CMUTs. As a result, this dissertation work aims to develop a CMUT fabrication process with fewer fabrication constraints, low-cost and low process temperature for CMOS integration. The developed CMUT fabrication processes reported in the thesis applied photosensitive polymer adhesive for wafer bonding in order to make a process with good tolerance to contaminations and defects on the wafer surface, present a wide range of material selection at the bonding interface and require low process temperature (less than 250°C). These features can benefit CMUT fabrication with increased yield better design flexibility and lower cost. Having maximum process temperature of 250°C, the developed processes can also be CMOS compatible. Furthermore, a novel CMUT structure, which can only be achieved by the reported technique, was developed showing more than doubled ultrasound receive sensitivity when compared with conventional CMUT structures. The fabrication processes were developed systematically and the details of process development will be presented in this thesis.

Micromachined Ultrasonic Transducers

Micromachined Ultrasonic Transducers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Microfabricated ultrasonic transducers have been generated which operate in both liquids and gases. Air coupled through transmission of aluminum was observed for the first time using a pair of 2.3 MHz transducers. The dynamic range of the transducers was 110 dB, and the received signal had an SNR of 30 dB. Air coupled through transmission of steel and glass has also been observed. A theoretical model for the transducers has been refined and agrees well with experimental results. A robust microfabrication process has been developed and was used to generate air transducers which resonate from 2 to 12 MHz, as well as immersion transducers that operate in water from 1 to 20 MHz with a 60 dB dynamic range. Optimized immersion and air transducers have been designed and a dynamic range above 110 dB is anticipated. This development effort finds applications in hydrophones, medical ultrasound, nondestructive evaluation, ranging, flow metering, and scanning tip force sensing and lithography.

The Design, Fabrication and Characterization of Capacitive Micromachined Ultrasonic Transducers for Imaging Applications

The Design, Fabrication and Characterization of Capacitive Micromachined Ultrasonic Transducers for Imaging Applications PDF Author: Andrew Stephan Logan
Publisher:
ISBN:
Category :
Languages : en
Pages : 155

Get Book Here

Book Description
Capacitive micromachined ultrasonic transducers (CMUTs) have proven themselves to be excellent candidates for medical ultrasonic imaging applications. The use of semiconductor fabrication techniques facilitates the fabrication of high quality arrays of uniform cells and elements, broad acoustic bandwidth, the potential to integrate the transducers with the necessary electronics, and the opportunity to exploit the benefits of batch fabrication. In this thesis, the design, fabrication and testing of one- and two-dimensional CMUT arrays using a novel wafer bonding process whereby the membrane and the insulation layer are both silicon nitride is reported. A user-grown insulating membrane layer avoids the need for expensive SOI wafers, permits optimization of the electrode size, and allows more freedom in selecting the membrane thickness, while also enjoying the benefits of wafer bonding fabrication. Using a row-column addressing scheme for an NxN two-dimensional array permits three-dimensional imaging with a large reduction in the complexity of the array when compared to a conventional 2D array with connections to all N2 elements. Only 2N connections are required and the image acquisition rate has the potential to be greatly increased. A simplification of the device at the imaging end will facilitate the integration of a three-dimensional imaging CMUT array into either an endoscope or catheter which is the ultimate purpose of this research project. To date, many sizes of transducers which operate at different frequencies have been successfully fabricated. Initial characterization in terms of resonant frequency and, transmission and reception in immersion has been performed on most of the device types. Extensive characterization has been performed with a linear 32 element array transducer and a 32x32 element row-column transducer. Two- and three-dimensional phased array imaging has been demonstrated.

Capacitive Micromachined Ultrasonic Transducers with Substrate-embedded Springs

Capacitive Micromachined Ultrasonic Transducers with Substrate-embedded Springs PDF Author: Byung Chul Lee
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
After the first capacitive micromachined ultrasonic transducer (CMUT) was invented in 1994, it became one of the candidate technologies to advance the state-of-the-art of medical ultrasound imaging. Benefiting from its fabrication technique based on the semiconductor industry, CMUT technology has broadened the medical and therapeutic applications such as real-time volumetric ultrasound imaging, catheter-based forward-looking intravascular ultrasound (IVUS), photoacoustic imaging, high-intensity focused ultrasound (HIFU) and so on. In spite of many advantages, however, CMUT technology has been criticized with its relatively low transmit sensitivity (~10 kPa/V) or low average volume displacement efficiency (0.1 nm/V) as well as large drive and bias voltage requirements (in a range of a few hundreds of volts). In order to resolve these issues and open up new potential of clinical applications, this dissertation describes the design, fabrication, and system implementation of CMUTs with substrate-embedded springs, so-called post-CMUT (PCMUT). Since PCMUT structure resembles an ideal piston transducer, the improvements in performance mainly stem from the higher average displacement of the top plate for a given gap height. The overview of the first generation PCMUT is introduced and two main issues in simulation and fabrication aspects of the first generation PCMUT is discussed. To further improve the PCMUT device, a 3D finite element analysis (FEA) model of the PCMUT is demonstrated to predict the performance of the first generation PCMUT. In addition, the design guideline of the second generation PCMUT is proposed for achieving the maximum fractional bandwidth (100 %) as well as with the highest transmit sensitivity (~28 kPa/V). The second generation PCMUT is fabricated by using three combination MEMS processes: usage of two silicon-on-insulator (SOI) wafers, wafer bonding process, and wafer polishing process. The second generation PCMUT achieves high transmit sensitivity (~21 kPa/V) or large average volume displacement efficiency (1.1 nm/V) with a low bias voltage (55 V). Compared to a commercial piezoelectric transducer, the second generation PCMUT improves 2.75 times of the maximum output pressure and 5.25 times of the average volume displacement efficiency with respect to the same voltage. After fabrication and performance characterization of the second generation PCMUT, this dissertation demonstrates the feasibility of PCMUT to use it in medical imaging system by integrating PCMUT with a custom-built integrated circuit (IC). Photoacoustic imaging is also presented for one of its application examples.

Dual-electrode Capacitive Micromachined Ultrasonic Transducers for Medical Ultrasound Applications

Dual-electrode Capacitive Micromachined Ultrasonic Transducers for Medical Ultrasound Applications PDF Author: Rasim Oytun Guldiken
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages :

Get Book Here

Book Description
Capacitive Micromachined Ultrasonic Transducers (CMUTs) have been introduced as a viable alternative to piezoelectric transducers in medical ultrasound imaging in the last decade. CMUTs are especially suitable for applications requiring small size such as catheter based cardiovascular applications. Despite these advantages and their broad bandwidth, earlier studies indicated that the overall sensitivity of CMUTs need to be improved to match piezoelectric transducers. This dissertation addresses this issue by introducing the dual-electrode CMUT concept. Dual electrode configuration takes advantage of leveraged bending in electrostatic actuators to increase both the pressure output and receive sensitivity of the CMUTs. Static and dynamic finite element based models are developed to model the behavior of dual-electrode CMUTs. The devices are then successfully fabricated and characterized. Experiments illustrate that the pulse echo performance is increased by more than 15dB with dual-electrode CMUTs as compared to single electrode conventional CMUT. Further device optimization is explored via membrane shape adjustment by adding a center mass to the design. Electromechanical coupling coefficient (kc2) is investigated as a figure of merit to evaluate performance improvement with non-uniform/uniform membrane dual-electrode CMUTs. When the center mass is added to the design, the optimized non-uniform membrane increases the electromechanical coupling coefficient from 0.24 to 0.85 while increasing one-way 3dB fractional bandwidth from 80% to 140% and reducing the DC bias requirement from 160V to 132V. The results of this modeling study are successfully verified by experiments. With this membrane shape adjustment, significant performance improvement (nearly 20dB) is achieved with the dual-electrode CMUT structure that enables the CMUT performance to exceed that of piezoelectric transducers for many applications.

Diagnostic Ultrasound Imaging: Inside Out

Diagnostic Ultrasound Imaging: Inside Out PDF Author: Thomas L. Szabo
Publisher: Academic Press
ISBN: 012396542X
Category : Science
Languages : en
Pages : 829

Get Book Here

Book Description
Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures (60 available in color on the companion website), and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field. Enables practicing engineers, students and clinical professionals to understand the essential physics and signal processing techniques behind modern imaging systems as well as introducing the latest developments that will shape medical ultrasound in the future Suitable for both newcomers and experienced readers, the practical, progressively organized applied approach is supported by hands-on MATLAB® code and worked examples that enable readers to understand the principles underlying diagnostic and therapeutic ultrasound Covers the new important developments in the use of medical ultrasound: elastography and high-intensity therapeutic ultrasound. Many new developments are comprehensively reviewed and explained, including aberration correction, acoustic measurements, acoustic radiation force imaging, alternate imaging architectures, bioeffects: diagnostic to therapeutic, Fourier transform imaging, multimode imaging, plane wave compounding, research platforms, synthetic aperture, vector Doppler, transient shear wave elastography, ultrafast imaging and Doppler, functional ultrasound and viscoelastic models

Capacitive Micromachined Ultrasonic Transducer (CMUT) Chemical Sensor and Its Interface Circuits

Capacitive Micromachined Ultrasonic Transducer (CMUT) Chemical Sensor and Its Interface Circuits PDF Author: Hyunjoo Jenny Lee
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Miniaturized chemical sensors based on microelectromechanical-systems (MEMS) offer competitive advantages over existing bench-top chemical analyzers, such as small size, low power consumption, low cost due to batch fabrication, and CMOS compatibility. The potential for system integration of these chemical sensors with on-chip CMOS circuitry expands the spectrum of use, including consumer, industrial, and homeland security applications. This thesis introduces a miniaturized resonant chemical sensor based on a 50-MHz capacitive micromachined ultrasonic transducer (CMUT). With a high mass sensitivity of 4.3 ag/Hz, this CMUT-based chemical sensor achieves excellent volume sensitivity of 21.2 ppt/Hz to dimethyl methylphosphonate (DMMP), a common simulant for Sarin gas. In addition, a direct application of a mesoporous silica thin-film on a CMUT for relative humidity and carbon dioxide detection is presented. Using a mesoporous silica thin-film with a pore size of ~11 nm, this sensor achieves one of the lowest volume resolutions and a sensitive detection of 5.1 × 10-4%RH/Hz to water vapor in nitrogen. In addition, a mesoporous thin-film that is functionalized with an amino-group is directly applied on the resonant sensor, which exhibits a volume sensitivity of 1.6 × 10-4%/Hz and a volume resolution of 1.82 × 10-4% to carbon dioxide in nitrogen. Lastly, this thesis describes the sensor interface circuitry for CMUT and discusses the frequency noise analysis of CMUT-based oscillators. Specifically, a multi-channel interface integrated circuit (IC) implemented using 0.18-um CMOS technology, which results in reduced area and power consumption for each channel is presented. Two-channel detection of relative humidity is demonstrated using this circuit.