Measure and Integration Theory

Measure and Integration Theory PDF Author: Heinz Bauer
Publisher: Walter de Gruyter
ISBN: 311086620X
Category : Mathematics
Languages : en
Pages : 249

Get Book Here

Book Description
This book gives a straightforward introduction to the field as it is nowadays required in many branches of analysis and especially in probability theory. The first three chapters (Measure Theory, Integration Theory, Product Measures) basically follow the clear and approved exposition given in the author's earlier book on "Probability Theory and Measure Theory". Special emphasis is laid on a complete discussion of the transformation of measures and integration with respect to the product measure, convergence theorems, parameter depending integrals, as well as the Radon-Nikodym theorem. The final chapter, essentially new and written in a clear and concise style, deals with the theory of Radon measures on Polish or locally compact spaces. With the main results being Luzin's theorem, the Riesz representation theorem, the Portmanteau theorem, and a characterization of locally compact spaces which are Polish, this chapter is a true invitation to study topological measure theory. The text addresses graduate students, who wish to learn the fundamentals in measure and integration theory as needed in modern analysis and probability theory. It will also be an important source for anyone teaching such a course.

Measure and Integration Theory

Measure and Integration Theory PDF Author: Heinz Bauer
Publisher: Walter de Gruyter
ISBN: 311086620X
Category : Mathematics
Languages : en
Pages : 249

Get Book Here

Book Description
This book gives a straightforward introduction to the field as it is nowadays required in many branches of analysis and especially in probability theory. The first three chapters (Measure Theory, Integration Theory, Product Measures) basically follow the clear and approved exposition given in the author's earlier book on "Probability Theory and Measure Theory". Special emphasis is laid on a complete discussion of the transformation of measures and integration with respect to the product measure, convergence theorems, parameter depending integrals, as well as the Radon-Nikodym theorem. The final chapter, essentially new and written in a clear and concise style, deals with the theory of Radon measures on Polish or locally compact spaces. With the main results being Luzin's theorem, the Riesz representation theorem, the Portmanteau theorem, and a characterization of locally compact spaces which are Polish, this chapter is a true invitation to study topological measure theory. The text addresses graduate students, who wish to learn the fundamentals in measure and integration theory as needed in modern analysis and probability theory. It will also be an important source for anyone teaching such a course.

Integration Theory

Integration Theory PDF Author: Augustus J.E.M. Janssen
Publisher: Springer
ISBN: 3540389377
Category : Mathematics
Languages : en
Pages : 229

Get Book Here

Book Description


The Bartle-Dunford-Schwartz Integral

The Bartle-Dunford-Schwartz Integral PDF Author: Thiruvaiyaru V. Panchapagesan
Publisher: Springer Science & Business Media
ISBN: 3764386029
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
This volume is a thorough and comprehensive treatise on vector measures, treating the vectorial Radon integration in detail. It explores an interplay between, on the one side, linear operators, transferring real (complex) functions onto elements of locally convex Hausdorff spaces, and vector-valued measures, on the other. The book contains not only a large amount of new material but also corrects various errors in well-known results available in the literature.

Measure and Integration

Measure and Integration PDF Author: Heinz König
Publisher: Springer Science & Business Media
ISBN: 3034803826
Category : Mathematics
Languages : en
Pages : 517

Get Book Here

Book Description
This collection of Heinz König’s publications connects to his book of 1997 “Measure and Integration” and presents significant developments in the subject from then up to the present day. The result is a consistent new version of measure theory, including selected applications. The basic step is the introduction of the inner • (bullet) and outer • (bullet) premeasures and their extension to unique maximal measures. New “envelopes” for the initial set function (to replace the traditional Carathéodory outer measures) have been created, which lead to much simpler and more explicit treatment. In view of these new concepts, the main results are unmatched in scope and plainness, as well as in explicitness. Important examples are the formation of products, a unified Daniell-Stone-Riesz representation theorem, and projective limits. Further to the contributions in this volume, after 2011 Heinz König published two more articles that round up his work: On the marginals of probability contents on lattices (Mathematika 58, No. 2, 319-323, 2012), and Measure and integration: the basic extension and representation theorems in terms of new inner and outer envelopes (Indag. Math., New Ser. 25, No. 2, 305-314, 2014).

Nonabsolute Integration On Measure Spaces

Nonabsolute Integration On Measure Spaces PDF Author: Wee Leng Ng
Publisher: World Scientific
ISBN: 9813221984
Category : Mathematics
Languages : en
Pages : 247

Get Book Here

Book Description
This book offers to the reader a self-contained treatment and systematic exposition of the real-valued theory of a nonabsolute integral on measure spaces. It is an introductory textbook to Henstock-Kurzweil type integrals defined on abstract spaces. It contains both classical and original results that are accessible to a large class of readers.It is widely acknowledged that the biggest difficulty in defining a Henstock-Kurzweil integral beyond Euclidean spaces is the definition of a set of measurable sets which will play the role of 'intervals' in the abstract setting. In this book the author shows a creative and innovative way of defining 'intervals' in measure spaces, and prove many interesting and important results including the well-known Radon-Nikodým theorem.

Lectures on Real Analysis

Lectures on Real Analysis PDF Author: J Yeh
Publisher: World Scientific Publishing Company
ISBN: 9813105550
Category : Functions of real variables
Languages : en
Pages : 564

Get Book Here

Book Description
The theory of the Lebesgue integral is a main pillar in the foundation of modern analysis and its applications, including probability theory. This volume shows how and why the Lebesgue integral is such a universal and powerful concept. The lines of development of the theory are made clear by the order in which the main theorems are presented. Frequent references to earlier theorems made in the proofs emphasize the interdependence of the theorems and help to show how the various definitions and theorems fit together. Counterexamples are included to show why a hypothesis in a theorem cannot be dropped. The book is based upon a course on real analysis which the author has taught. It is particularly suitable for a one-year course at the graduate level. Precise statements and complete proofs are given for every theorem, with no obscurity left. For this reason the book is also suitable for self-study. Request Inspection Copy

Real Analysis: Theory Of Measure And Integration (3rd Edition)

Real Analysis: Theory Of Measure And Integration (3rd Edition) PDF Author: James J Yeh
Publisher: World Scientific Publishing Company
ISBN: 9814578568
Category : Mathematics
Languages : en
Pages : 840

Get Book Here

Book Description
This book presents a unified treatise of the theory of measure and integration. In the setting of a general measure space, every concept is defined precisely and every theorem is presented with a clear and complete proof with all the relevant details. Counter-examples are provided to show that certain conditions in the hypothesis of a theorem cannot be simply dropped. The dependence of a theorem on earlier theorems is explicitly indicated in the proof, not only to facilitate reading but also to delineate the structure of the theory. The precision and clarity of presentation make the book an ideal textbook for a graduate course in real analysis while the wealth of topics treated also make the book a valuable reference work for mathematicians.The book is also very helpful to graduate students in statistics and electrical engineering, two disciplines that apply measure theory.

Lectures on Real Analysis

Lectures on Real Analysis PDF Author: J. Yeh
Publisher: World Scientific
ISBN: 9789810239367
Category : Mathematics
Languages : en
Pages : 568

Get Book Here

Book Description
The theory of the Lebesgue integral is a main pillar in the foundation of modern analysis and its applications, including probability theory. This volume shows how and why the Lebesgue integral is such a universal and powerful concept. The lines of development of the theory are made clear by the order in which the main theorems are presented. Frequent references to earlier theorems made in the proofs emphasize the interdependence of the theorems and help to show how the various definitions and theorems fit together. Counter-examples are included to show why a hypothesis in a theorem cannot be dropped. The book is based upon a course on real analysis which the author has taught. It is particularly suitable for a one-year course at the graduate level. Precise statements and complete proofs are given for every theorem, with no obscurity left. For this reason the book is also suitable for self-study.

Journal of Research of the National Bureau of Standards

Journal of Research of the National Bureau of Standards PDF Author: United States. National Bureau of Standards
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 290

Get Book Here

Book Description


Traces of Hecke Operators

Traces of Hecke Operators PDF Author: Andrew Knightly
Publisher: American Mathematical Soc.
ISBN: 0821837397
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
The Fourier coefficients of modular forms are of widespread interest as an important source of arithmetic information. In many cases, these coefficients can be recovered from explicit knowledge of the traces of Hecke operators. The original trace formula for Hecke operators was given by Selberg in 1956. Many improvements were made in subsequent years, notably by Eichler and Hijikata. This book provides a comprehensive modern treatment of the Eichler-Selberg/Hijikata trace formulafor the traces of Hecke operators on spaces of holomorphic cusp forms of weight $\mathtt{k >2$ for congruence subgroups of $\operatorname{SL 2(\mathbf{Z )$. The first half of the text brings together the background from number theory and representation theory required for the computation. Thisincludes detailed discussions of modular forms, Hecke operators, adeles and ideles, structure theory for $\operatorname{GL 2(\mathbf{A )$, strong approximation, integration on locally compact groups, the Poisson summation formula, adelic zeta functions, basic representation theory for locally compact groups, the unitary representations of $\operatorname{GL 2(\mathbf{R )$, and the connection between classical cusp forms and their adelic counterparts on $\operatorname{GL 2(\mathbf{A )$. Thesecond half begins with a full development of the geometric side of the Arthur-Selberg trace formula for the group $\operatorname{GL 2(\mathbf{A )$. This leads to an expression for the trace of a Hecke operator, which is then computed explicitly. The exposition is virtually self-contained, withcomplete references for the occasional use of auxiliary results. The book concludes with several applications of the final formula.