Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations

Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations PDF Author:
Publisher:
ISBN: 9787506209625
Category : Differential equations, Partial
Languages : en
Pages : 121

Get Book Here

Book Description

Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations

Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations PDF Author:
Publisher:
ISBN: 9787506209625
Category : Differential equations, Partial
Languages : en
Pages : 121

Get Book Here

Book Description


Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations

Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations PDF Author: P. Constantin
Publisher: Springer Science & Business Media
ISBN: 1461235065
Category : Mathematics
Languages : en
Pages : 133

Get Book Here

Book Description
This work was initiated in the summer of 1985 while all of the authors were at the Center of Nonlinear Studies of the Los Alamos National Laboratory; it was then continued and polished while the authors were at Indiana Univer sity, at the University of Paris-Sud (Orsay), and again at Los Alamos in 1986 and 1987. Our aim was to present a direct geometric approach in the theory of inertial manifolds (global analogs of the unstable-center manifolds) for dissipative partial differential equations. This approach, based on Cauchy integral mani folds for which the solutions of the partial differential equations are the generating characteristic curves, has the advantage that it provides a sound basis for numerical Galerkin schemes obtained by approximating the inertial manifold. The work is self-contained and the prerequisites are at the level of a graduate student. The theoretical part of the work is developed in Chapters 2-14, while in Chapters 15-19 we apply the theory to several remarkable partial differ ential equations.

Probability and Partial Differential Equations in Modern Applied Mathematics

Probability and Partial Differential Equations in Modern Applied Mathematics PDF Author: Edward C. Waymire
Publisher: Springer Science & Business Media
ISBN: 038729371X
Category : Mathematics
Languages : en
Pages : 265

Get Book Here

Book Description
"Probability and Partial Differential Equations in Modern Applied Mathematics" is devoted to the role of probabilistic methods in modern applied mathematics from the perspectives of both a tool for analysis and as a tool in modeling. There is a recognition in the applied mathematics research community that stochastic methods are playing an increasingly prominent role in the formulation and analysis of diverse problems of contemporary interest in the sciences and engineering. A probabilistic representation of solutions to partial differential equations that arise as deterministic models allows one to exploit the power of stochastic calculus and probabilistic limit theory in the analysis of deterministic problems, as well as to offer new perspectives on the phenomena for modeling purposes. There is also a growing appreciation of the role for the inclusion of stochastic effects in the modeling of complex systems. This has led to interesting new mathematical problems at the interface of probability, dynamical systems, numerical analysis, and partial differential equations. This volume will be useful to researchers and graduate students interested in probabilistic methods, dynamical systems approaches and numerical analysis for mathematical modeling in the sciences and engineering.

Progress in Analysis

Progress in Analysis PDF Author: International Society for Analysis, Applications, and Computation. Congress
Publisher: World Scientific
ISBN: 9812794255
Category : Mathematics
Languages : en
Pages : 737

Get Book Here

Book Description
The biannual ISAAC congresses provide information about recent progress in the whole area of analysis including applications and computation. This book constitutes the proceedings of the third meeting. Contents: .: Volume 1: Function Spaces and Fractional Calculus (V I Burenkov & S Samko); Asymptotic Decomposition (Methods of Small Parameters, Averaging Theory) (J A Dubinski); Integral Transforms and Applications (S Saitoh et al.); Analytic Functionals, Hyperfunctions and Generalized Functions (M Morimoto & H Komatsu); Geometric Function Theory (G Kohr & M Kohr); omplex Function Spaces (R Aulaskari & I Laine); Value Distribution Theory and Complex Dynamics (C C Yang); Clifford Analysis (K Grlebeck et al.); Octonions (T Dray & C Monogue); Nonlinear Potential Theory (O Martio); Classical and Fine Potential Theory, Holomorphic and Finely Holomorphic Functions (P Tamrazov); Differential Geometry and Control Theory for PDEs (B Gulliver et al.); Differential Geometry and Quantum Physics (-); Dynamical Systems (B Fiedler); Attractors for Partial Differential Equations (G Raugel); Spectral Theory of Differential Operators (B Vainberg); Pseudodifferential Operators, Quantization and Signal Analysis (M W Wong); Microlocal Analysis (B-W Schulze & M Korey); Volume 2: Complex and Functional Analytic Methods in PDEs (A Cialdea et al.); Geometric Properties of Solutions of PDEs (R Magnanini); Qualitative Properties of Solutions of Hyperbolic and SchrAdinger Equations (M Reissig & K Yagdjian); Homogenization Moving Boundaries and Porous Media (A Bourgeat & R P Gilbert); Constructive Methods in Applied Problems (P Krutitskii); Waves in Complex Media (R P Gilbert & A Wirgin); Nonlinear Waves (I Lasiecka & H Koch); Mathematical Analysis of Problems in Solid Mechanics (K Hackl & X Li); Direct and Inverse Scattering (L Fishman); Inverse Problems (G N Makrakis et al.); Mathematical Methods in Non-Destructive Evaluation and Non-Destructive Testing (A Wirgin); Numerical Methods for PDEs, Systems and Optimization (A Ben-Israel & I Herrera). Readership: Graduate students and researchers in real, complex, numerical analysis, as well as mathematical physics."

Progress In Analysis, Proceedings Of The 3rd Isaac Congress (In 2 Volumes)

Progress In Analysis, Proceedings Of The 3rd Isaac Congress (In 2 Volumes) PDF Author: Heinrich G W Begehr
Publisher: World Scientific
ISBN: 9814485233
Category : Mathematics
Languages : en
Pages : 1557

Get Book Here

Book Description
The biannual ISAAC congresses provide information about recent progress in the whole area of analysis including applications and computation. This book constitutes the proceedings of the third meeting.

Chaos, Fractals, and Noise

Chaos, Fractals, and Noise PDF Author: Andrzej Lasota
Publisher: Springer Science & Business Media
ISBN: 146124286X
Category : Mathematics
Languages : en
Pages : 481

Get Book Here

Book Description
The first edition of this book was originally published in 1985 under the ti tle "Probabilistic Properties of Deterministic Systems. " In the intervening years, interest in so-called "chaotic" systems has continued unabated but with a more thoughtful and sober eye toward applications, as befits a ma turing field. This interest in the serious usage of the concepts and techniques of nonlinear dynamics by applied scientists has probably been spurred more by the availability of inexpensive computers than by any other factor. Thus, computer experiments have been prominent, suggesting the wealth of phe nomena that may be resident in nonlinear systems. In particular, they allow one to observe the interdependence between the deterministic and probabilistic properties of these systems such as the existence of invariant measures and densities, statistical stability and periodicity, the influence of stochastic perturbations, the formation of attractors, and many others. The aim of the book, and especially of this second edition, is to present recent theoretical methods which allow one to study these effects. We have taken the opportunity in this second edition to not only correct the errors of the first edition, but also to add substantially new material in five sections and a new chapter.

Vorticity and Turbulence

Vorticity and Turbulence PDF Author: Alexandre J. Chorin
Publisher: Springer Science & Business Media
ISBN: 1441987282
Category : Mathematics
Languages : en
Pages : 181

Get Book Here

Book Description
This book provides an introduction to the theory of turbulence in fluids based on the representation of the flow by means of its vorticity field. It has long been understood that, at least in the case of incompressible flow, the vorticity representation is natural and physically transparent, yet the development of a theory of turbulence in this representation has been slow. The pioneering work of Onsager and of Joyce and Montgomery on the statistical mechanics of two-dimensional vortex systems has only recently been put on a firm mathematical footing, and the three-dimensional theory remains in parts speculative and even controversial. The first three chapters of the book contain a reasonably standard intro duction to homogeneous turbulence (the simplest case); a quick review of fluid mechanics is followed by a summary of the appropriate Fourier theory (more detailed than is customary in fluid mechanics) and by a summary of Kolmogorov's theory of the inertial range, slanted so as to dovetail with later vortex-based arguments. The possibility that the inertial spectrum is an equilibrium spectrum is raised.

Stability and Transition in Shear Flows

Stability and Transition in Shear Flows PDF Author: Peter J. Schmid
Publisher: Springer Science & Business Media
ISBN: 1461301858
Category : Science
Languages : en
Pages : 561

Get Book Here

Book Description
A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.

Shape Optimization by the Homogenization Method

Shape Optimization by the Homogenization Method PDF Author: Gregoire Allaire
Publisher: Springer Science & Business Media
ISBN: 1468492861
Category : Technology & Engineering
Languages : en
Pages : 470

Get Book Here

Book Description
This book provides an introduction to the theory and numerical developments of the homogenization method. It's main features are: a comprehensive presentation of homogenization theory; an introduction to the theory of two-phase composite materials; a detailed treatment of structural optimization by using homogenization; a complete discussion of the resulting numerical algorithms with many documented test problems. It will be of interest to researchers, engineers, and advanced graduate students in applied mathematics, mechanical engineering, and structural optimization.

Analysis of Spherical Symmetries in Euclidean Spaces

Analysis of Spherical Symmetries in Euclidean Spaces PDF Author: Claus Müller
Publisher: Springer Science & Business Media
ISBN: 1461205816
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
This self-contained book offers a new and direct approach to the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of arbitrary dimensions. Based on many years of lecturing to mathematicians, physicists and engineers in scientific research institutions in Europe and the USA, the author uses elementary concepts to present the spherical harmonics in a theory of invariants of the orthogonal group. One of the highlights is the extension of the classical results of the spherical harmonics into the complex - particularly important for the complexification of the Funk-Hecke formula which successfully leads to new integrals for Bessel- and Hankel functions with many applications of Fourier integrals and Radon transforms. Numerous exercises stimulate mathematical ingenuity and bridge the gap between well-known elementary results and their appearance in the new formations.