Integrability, Self-duality, and Twistor Theory

Integrability, Self-duality, and Twistor Theory PDF Author: Lionel J. Mason
Publisher: Oxford University Press
ISBN: 9780198534983
Category : Language Arts & Disciplines
Languages : en
Pages : 384

Get Book Here

Book Description
Many of the familiar integrable systems of equations are symmetry reductions of self-duality equations on a metric or on a Yang-Mills connection. For example, the Korteweg-de Vries and non-linear Schrodinger equations are reductions of the self-dual Yang-Mills equation. This book explores in detail the connections between self-duality and integrability, and also the application of twistor techniques to integrable systems. It supports two central theories: that the symmetries of self-duality equations provide a natural classification scheme for integrable systems; and that twistor theory provides a uniform geometric framework for the study of Backlund transformations, the inverse scattering method, and other such general constructions of integrability theory. The book will be useful to researchers and graduate students in mathematical physics.

Integrability, Self-duality, and Twistor Theory

Integrability, Self-duality, and Twistor Theory PDF Author: Lionel J. Mason
Publisher: Oxford University Press
ISBN: 9780198534983
Category : Language Arts & Disciplines
Languages : en
Pages : 384

Get Book Here

Book Description
Many of the familiar integrable systems of equations are symmetry reductions of self-duality equations on a metric or on a Yang-Mills connection. For example, the Korteweg-de Vries and non-linear Schrodinger equations are reductions of the self-dual Yang-Mills equation. This book explores in detail the connections between self-duality and integrability, and also the application of twistor techniques to integrable systems. It supports two central theories: that the symmetries of self-duality equations provide a natural classification scheme for integrable systems; and that twistor theory provides a uniform geometric framework for the study of Backlund transformations, the inverse scattering method, and other such general constructions of integrability theory. The book will be useful to researchers and graduate students in mathematical physics.

Applications of Analytic and Geometric Methods to Nonlinear Differential Equations

Applications of Analytic and Geometric Methods to Nonlinear Differential Equations PDF Author: P.A. Clarkson
Publisher: Springer Science & Business Media
ISBN: 940112082X
Category : Science
Languages : en
Pages : 466

Get Book Here

Book Description
In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the `soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang--Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied. Recently, it has been conjectured that, in some sense, all soliton equations arise as special cases of the SDYM equations; subsequently many have been discovered as either exact or asymptotic reductions of the SDYM equations. Consequently what seems to be emerging is that a natural, physically significant system such as the SDYM equations provides the basis for a unifying framework underlying this class of integrable systems, i.e. `soliton' systems. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. The majority of nonlinear evolution equations are nonintegrable, and so asymptotic, numerical perturbation and reduction techniques are often used to study such equations. This book also contains articles on perturbed soliton equations. Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations. (ABSTRACT) In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years; the inverse scattering transform (IST), for `soliton' equations and twistor theory, for the self-dual Yang--Mills (SDYM) equations. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. Additionally, it contains articles on perturbed soliton equations, Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations.

Geometry and Integrability

Geometry and Integrability PDF Author: Lionel Mason
Publisher: Cambridge University Press
ISBN: 9780521529990
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
Articles from leading researchers to introduce the reader to cutting-edge topics in integrable systems theory.

Twistor Theory

Twistor Theory PDF Author: Stephen Huggett
Publisher: Routledge
ISBN: 135140654X
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
Presents the proceedings of the recently held conference at the University of Plymouth. Papers describe recent work by leading researchers in twistor theory and cover a wide range of subjects, including conformal invariants, integral transforms, Einstein equations, anti-self-dual Riemannian 4-manifolds, deformation theory, 4-dimensional conformal structures, and more.;The book is intended for complex geometers and analysts, theoretical physicists, and graduate students in complex analysis, complex differential geometry, and mathematical physics.

Further Advances in Twistor Theory, Volume III

Further Advances in Twistor Theory, Volume III PDF Author: L.J. Mason
Publisher: CRC Press
ISBN: 1482280949
Category : Mathematics
Languages : en
Pages : 432

Get Book Here

Book Description
Although twistor theory originated as an approach to the unification of quantum theory and general relativity, twistor correspondences and their generalizations have provided powerful mathematical tools for studying problems in differential geometry, nonlinear equations, and representation theory. At the same time, the theory continues to offer pro

Further Advances in Twistor Theory

Further Advances in Twistor Theory PDF Author: L.J. Mason
Publisher: CRC Press
ISBN: 1000673839
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
Twistor theory is the remarkable mathematical framework that was discovered by Roger Penrose in the course of research into gravitation and quantum theory. It have since developed into a broad, many-faceted programme that attempts to resolve basic problems in physics by encoding the structure of physical fields and indeed space-time itself into the complex analytic geometry of twistor space. Twistor theory has important applications in diverse areas of mathematics and mathematical physics. These include powerful techniques for the solution of nonlinear equations, in particular the self-duality equations both for the Yang-Mills and the Einstein equations, new approaches to the representation theory of Lie groups, and the quasi-local definition of mass in general relativity, to name but a few. This volume and its companions comprise an abundance of new material, including an extensive collection of Twistor Newsletter articles written over a period of 15 years. These trace the development of the twistor programme and its applications over that period and offer an overview on the current status of various aspects of that programme. The articles have been written in an informal and easy-to-read style and have been arranged by the editors into chapter supplemented by detailed introductions, making each volume self-contained and accessible to graduate students and non-specialists from other fields. Volume II explores applications of flat twistor space to nonlinear problems. It contains articles on integrable or soluble nonlinear equations, conformal differential geometry, various aspects of general relativity, and the development of Penrose's quasi-local mass construction.

Integrable Systems

Integrable Systems PDF Author: N. J. Hitchin
Publisher: OUP Oxford
ISBN: 0191664456
Category : Mathematics
Languages : en
Pages : 147

Get Book Here

Book Description
This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all of whom are internationally known mathematicians and renowned expositors. It is written in an accessible and informal style, and fills a gap in the existing literature. The introduction by Nigel Hitchin addresses the meaning of integrability: how do we recognize an integrable system? His own contribution then develops connections with algebraic geometry, and includes an introduction to Riemann surfaces, sheaves, and line bundles. Graeme Segal takes the Kortewegde Vries and nonlinear Schrödinger equations as central examples, and explores the mathematical structures underlying the inverse scattering transform. He explains the roles of loop groups, the Grassmannian, and algebraic curves. In the final part of the book, Richard Ward explores the connection between integrability and the self-dual Yang-Mills equations, and describes the correspondence between solutions to integrable equations and holomorphic vector bundles over twistor space.

Solitons, Instantons, and Twistors

Solitons, Instantons, and Twistors PDF Author: Maciej Dunajski
Publisher: Oxford University Press, USA
ISBN: 0198570627
Category : Language Arts & Disciplines
Languages : en
Pages : 374

Get Book Here

Book Description
A text aimed at third year undergraduates and graduates in mathematics and physics, presenting elementary twistor theory as a universal technique for solving differential equations in applied mathematics and theoretical physics.

60 Years Of Yang-mills Gauge Field Theories: C N Yang's Contributions To Physics

60 Years Of Yang-mills Gauge Field Theories: C N Yang's Contributions To Physics PDF Author: Lars Brink
Publisher: World Scientific
ISBN: 9814725579
Category : Science
Languages : en
Pages : 540

Get Book Here

Book Description
During the last six decades, Yang-Mills theory has increasingly become the cornerstone of theoretical physics. It is seemingly the only fully consistent relativistic quantum many-body theory in four space-time dimensions. As such it is the underlying theoretical framework for the Standard Model of Particle Physics, which has been shown to be the correct theory at the energies we now can measure. It has been investigated also from many other perspectives, and many new and unexpected features have been uncovered from this theory. In recent decades, apart from high energy physics, the theory has been actively applied in other branches of physics, such as statistical physics, condensed matter physics, nonlinear systems, etc. This makes the theory an indispensable topic for all who are involved in physics.The conference celebrated the exceptional achievements using Yang-Mills theory over the years but also many other truly remarkable contributions to different branches of physics from Prof C N Yang. This volume collects the invaluable talks by Prof C N Yang and the invited speakers reviewing these remarkable contributions and their importance for the future of physics.

Quantum Theory, Deformation and Integrability

Quantum Theory, Deformation and Integrability PDF Author: R. Carroll
Publisher: Elsevier
ISBN: 0080540082
Category : Mathematics
Languages : en
Pages : 421

Get Book Here

Book Description
About four years ago a prominent string theorist was quoted as saying that it might be possible to understand quantum mechanics by the year 2000. Sometimes new mathematical developments make such understanding appear possible and even close, but on the other hand, increasing lack of experimental verification make it seem to be further distant. In any event one seems to arrive at new revolutions in physics and mathematics every year. This book hopes to convey some of the excitment of this period, but will adopt a relatively pedestrian approach designed to illuminate the relations between quantum and classical. There will be some discussion of philosophical matters such as measurement, uncertainty, decoherence, etc. but philosophy will not be emphasized; generally we want to enjoy the fruits of computation based on the operator formulation of QM and quantum field theory. In Chapter 1 connections of QM to deterministic behavior are exhibited in the trajectory representations of Faraggi-Matone. Chapter 1 also includes a review of KP theory and some preliminary remarks on coherent states, density matrices, etc. and more on deterministic theory. We develop in Chapter 4 relations between quantization and integrability based on Moyal brackets, discretizations, KP, strings and Hirota formulas, and in Chapter 2 we study the QM of embedded curves and surfaces illustrating some QM effects of geometry. Chapter 3 is on quantum integrable systems, quantum groups, and modern deformation quantization. Chapter 5 involves the Whitham equations in various roles mediating between QM and classical behavior. In particular, connections to Seiberg-Witten theory (arising in N = 2 supersymmetric (susy) Yang-Mills (YM) theory) are discussed and we would still like to understand more deeply what is going on. Thus in Chapter 5 we will try to give some conceptual background for susy, gauge theories, renormalization, etc. from both a physical and mathematical point of view. In Chapter 6 we continue the deformation quantization then by exhibiting material based on and related to noncommutative geometry and gauge theory.