Author: Masoud Farzaneh
Publisher: John Wiley & Sons
ISBN: 9780470496244
Category : Technology & Engineering
Languages : en
Pages : 700
Book Description
Learn to correct icing and pollution problems in electrical line insulation Written by prominent experts in the field, this book takes an in-depth look at the issues of electrical insulators for icing and polluted environments. It shows: Engineers and environmental specialists how to carry out appropriate insulator contamination measurements, understand how these readings change with time and weather, and work out how the readings compare with the upper limits set by insulator dimensions in their existing stations Design engineers how to assess the likely maximum pollution and icing limits at a substation or along an overhead line, and then select insulators that have appropriate withstand margins Regulators why modest ice accretion at a moderate 0oC temperature on one occasion can qualify as a major reliability event day, while many similar days pass each winter without power system problems Educators why the ice surface flashover is well behaved compared to the conventional pollution flashover, making it much more suitable for demonstrations, modeling, and analysis The book is complemented with case studies and design equations to help readers identify the most appropriate insulators, bushings, and maintenance plans for their local conditions. Additionally, readers may download supplemental materials supporting evaluation of local climate and contamination. Insulators for Icing and Polluted Environments is indispensable reading for any professional who needs reliable electrical supply from networks exposed to sources of wetting and pollution. It also serves as an excellent introduction to the subjects of high-voltage surface flashover, environmental electrochemistry, and insulation coordination for researchers, professors, and students.
Insulators for Icing and Polluted Environments
Author: Masoud Farzaneh
Publisher: John Wiley & Sons
ISBN: 9780470496244
Category : Technology & Engineering
Languages : en
Pages : 700
Book Description
Learn to correct icing and pollution problems in electrical line insulation Written by prominent experts in the field, this book takes an in-depth look at the issues of electrical insulators for icing and polluted environments. It shows: Engineers and environmental specialists how to carry out appropriate insulator contamination measurements, understand how these readings change with time and weather, and work out how the readings compare with the upper limits set by insulator dimensions in their existing stations Design engineers how to assess the likely maximum pollution and icing limits at a substation or along an overhead line, and then select insulators that have appropriate withstand margins Regulators why modest ice accretion at a moderate 0oC temperature on one occasion can qualify as a major reliability event day, while many similar days pass each winter without power system problems Educators why the ice surface flashover is well behaved compared to the conventional pollution flashover, making it much more suitable for demonstrations, modeling, and analysis The book is complemented with case studies and design equations to help readers identify the most appropriate insulators, bushings, and maintenance plans for their local conditions. Additionally, readers may download supplemental materials supporting evaluation of local climate and contamination. Insulators for Icing and Polluted Environments is indispensable reading for any professional who needs reliable electrical supply from networks exposed to sources of wetting and pollution. It also serves as an excellent introduction to the subjects of high-voltage surface flashover, environmental electrochemistry, and insulation coordination for researchers, professors, and students.
Publisher: John Wiley & Sons
ISBN: 9780470496244
Category : Technology & Engineering
Languages : en
Pages : 700
Book Description
Learn to correct icing and pollution problems in electrical line insulation Written by prominent experts in the field, this book takes an in-depth look at the issues of electrical insulators for icing and polluted environments. It shows: Engineers and environmental specialists how to carry out appropriate insulator contamination measurements, understand how these readings change with time and weather, and work out how the readings compare with the upper limits set by insulator dimensions in their existing stations Design engineers how to assess the likely maximum pollution and icing limits at a substation or along an overhead line, and then select insulators that have appropriate withstand margins Regulators why modest ice accretion at a moderate 0oC temperature on one occasion can qualify as a major reliability event day, while many similar days pass each winter without power system problems Educators why the ice surface flashover is well behaved compared to the conventional pollution flashover, making it much more suitable for demonstrations, modeling, and analysis The book is complemented with case studies and design equations to help readers identify the most appropriate insulators, bushings, and maintenance plans for their local conditions. Additionally, readers may download supplemental materials supporting evaluation of local climate and contamination. Insulators for Icing and Polluted Environments is indispensable reading for any professional who needs reliable electrical supply from networks exposed to sources of wetting and pollution. It also serves as an excellent introduction to the subjects of high-voltage surface flashover, environmental electrochemistry, and insulation coordination for researchers, professors, and students.
Insulators for Icing and Polluted Environments
Author: Masoud Farzaneh
Publisher: John Wiley & Sons
ISBN: 047049624X
Category : Technology & Engineering
Languages : en
Pages : 708
Book Description
Learn to correct icing and pollution problems in electrical line insulation Written by prominent experts in the field, this book takes an in-depth look at the issues of electrical insulators for icing and polluted environments. It shows: Engineers and environmental specialists how to carry out appropriate insulator contamination measurements, understand how these readings change with time and weather, and work out how the readings compare with the upper limits set by insulator dimensions in their existing stations Design engineers how to assess the likely maximum pollution and icing limits at a substation or along an overhead line, and then select insulators that have appropriate withstand margins Regulators why modest ice accretion at a moderate 0oC temperature on one occasion can qualify as a major reliability event day, while many similar days pass each winter without power system problems Educators why the ice surface flashover is well behaved compared to the conventional pollution flashover, making it much more suitable for demonstrations, modeling, and analysis The book is complemented with case studies and design equations to help readers identify the most appropriate insulators, bushings, and maintenance plans for their local conditions. Additionally, readers may download supplemental materials supporting evaluation of local climate and contamination. Insulators for Icing and Polluted Environments is indispensable reading for any professional who needs reliable electrical supply from networks exposed to sources of wetting and pollution. It also serves as an excellent introduction to the subjects of high-voltage surface flashover, environmental electrochemistry, and insulation coordination for researchers, professors, and students.
Publisher: John Wiley & Sons
ISBN: 047049624X
Category : Technology & Engineering
Languages : en
Pages : 708
Book Description
Learn to correct icing and pollution problems in electrical line insulation Written by prominent experts in the field, this book takes an in-depth look at the issues of electrical insulators for icing and polluted environments. It shows: Engineers and environmental specialists how to carry out appropriate insulator contamination measurements, understand how these readings change with time and weather, and work out how the readings compare with the upper limits set by insulator dimensions in their existing stations Design engineers how to assess the likely maximum pollution and icing limits at a substation or along an overhead line, and then select insulators that have appropriate withstand margins Regulators why modest ice accretion at a moderate 0oC temperature on one occasion can qualify as a major reliability event day, while many similar days pass each winter without power system problems Educators why the ice surface flashover is well behaved compared to the conventional pollution flashover, making it much more suitable for demonstrations, modeling, and analysis The book is complemented with case studies and design equations to help readers identify the most appropriate insulators, bushings, and maintenance plans for their local conditions. Additionally, readers may download supplemental materials supporting evaluation of local climate and contamination. Insulators for Icing and Polluted Environments is indispensable reading for any professional who needs reliable electrical supply from networks exposed to sources of wetting and pollution. It also serves as an excellent introduction to the subjects of high-voltage surface flashover, environmental electrochemistry, and insulation coordination for researchers, professors, and students.
Maintaining Mission Critical Systems in a 24/7 Environment
Author: Peter M. Curtis
Publisher: John Wiley & Sons
ISBN: 1119506115
Category : Science
Languages : en
Pages : 656
Book Description
The new edition of the leading single-volume resource on designing, operating, and managing mission critical infrastructure Maintaining Mission Critical Systems in a 24/7 Environment provides in-depth coverage of operating, managing, and maintaining power quality and emergency power systems in mission critical facilities. This extensively revised third edition provides invaluable insight into the mission critical environment, helping professionals and students alike understand how to sustain continuous functionality, minimize the occurrence of costly unexpected downtime, and guard against power disturbances that can damage any organization's daily operations. Bridging engineering, operations, technology, and training, this comprehensive volume covers each component of specialized systems used in mission critical infrastructures worldwide. Throughout the text, readers are provided the up-to-date information necessary to design and analyze mission critical systems, reduce risk, comply with current policies and regulations, and maintain an appropriate level of reliability based on a facility's risk tolerance. Topics include safety, fire protection, energy security, and the myriad challenges and issues facing industry engineers today. Emphasizing business resiliency, data center efficiency, cyber security, and green power technology, this important volume: Features new and updated content throughout, including new chapters on energy security and on integrating cleaner and more efficient energy into mission critical applications Defines power quality terminology and explains the causes and effects of power disturbances Provides in-depth explanations of each component of mission critical systems, including standby generators, raised access floors, automatic transfer switches, uninterruptible power supplies, and data center cooling and fuel systems Contains in-depth discussion of the evolution and future of the mission critical facilities industry Includes PowerPoint presentations with voiceovers and a digital/video library of information relevant to the mission critical industry Maintaining Mission Critical Systems in a 24/7 Environment is a must-read reference and training guide for architects, property managers, building engineers, IT professionals, data center personnel, electrical & mechanical technicians, students, and others involved with all types of mission critical equipment.
Publisher: John Wiley & Sons
ISBN: 1119506115
Category : Science
Languages : en
Pages : 656
Book Description
The new edition of the leading single-volume resource on designing, operating, and managing mission critical infrastructure Maintaining Mission Critical Systems in a 24/7 Environment provides in-depth coverage of operating, managing, and maintaining power quality and emergency power systems in mission critical facilities. This extensively revised third edition provides invaluable insight into the mission critical environment, helping professionals and students alike understand how to sustain continuous functionality, minimize the occurrence of costly unexpected downtime, and guard against power disturbances that can damage any organization's daily operations. Bridging engineering, operations, technology, and training, this comprehensive volume covers each component of specialized systems used in mission critical infrastructures worldwide. Throughout the text, readers are provided the up-to-date information necessary to design and analyze mission critical systems, reduce risk, comply with current policies and regulations, and maintain an appropriate level of reliability based on a facility's risk tolerance. Topics include safety, fire protection, energy security, and the myriad challenges and issues facing industry engineers today. Emphasizing business resiliency, data center efficiency, cyber security, and green power technology, this important volume: Features new and updated content throughout, including new chapters on energy security and on integrating cleaner and more efficient energy into mission critical applications Defines power quality terminology and explains the causes and effects of power disturbances Provides in-depth explanations of each component of mission critical systems, including standby generators, raised access floors, automatic transfer switches, uninterruptible power supplies, and data center cooling and fuel systems Contains in-depth discussion of the evolution and future of the mission critical facilities industry Includes PowerPoint presentations with voiceovers and a digital/video library of information relevant to the mission critical industry Maintaining Mission Critical Systems in a 24/7 Environment is a must-read reference and training guide for architects, property managers, building engineers, IT professionals, data center personnel, electrical & mechanical technicians, students, and others involved with all types of mission critical equipment.
Electrical Conductivity in Polymer-Based Composites
Author: Reza Taherian
Publisher: William Andrew
ISBN: 012812542X
Category : Technology & Engineering
Languages : en
Pages : 434
Book Description
Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling and Applications offers detailed information on all aspects of conductive composites. These composites offer many benefits in comparison to traditional conductive materials, and have a broad range of applications, including electronic packaging, capacitors, thermistors, fuel cell devices, dielectrics, piezoelectric functions and ferroelectric memories. Sections cover the theory of electrical conductivity and the different categories of conductive composites, describing percolation threshold, tunneling effect and other phenomena in the field. Subsequent chapters present thorough coverage of the key phases in the development and use of conductive composites, including manufacturing methods, external parameters, applications, modelling and testing methods. This is an essential source of information for materials scientists and engineers working in the fields of polymer technology, processing and engineering, enabling them to improve manufacture and testing methods, and to benefit fully from applications. The book also provides industrial and academic researchers with a comprehensive and up-to-date understanding of conductive composites and related issues. - Explains the methods used in the manufacture and testing of conductive composites, and in the modeling of electrical conductivity - Contains specialized information on the full range of applications for conductive composites, including conductive adhesives or pastes - Brings scientists, engineers and researchers up-to-date with the latest advances in the field
Publisher: William Andrew
ISBN: 012812542X
Category : Technology & Engineering
Languages : en
Pages : 434
Book Description
Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling and Applications offers detailed information on all aspects of conductive composites. These composites offer many benefits in comparison to traditional conductive materials, and have a broad range of applications, including electronic packaging, capacitors, thermistors, fuel cell devices, dielectrics, piezoelectric functions and ferroelectric memories. Sections cover the theory of electrical conductivity and the different categories of conductive composites, describing percolation threshold, tunneling effect and other phenomena in the field. Subsequent chapters present thorough coverage of the key phases in the development and use of conductive composites, including manufacturing methods, external parameters, applications, modelling and testing methods. This is an essential source of information for materials scientists and engineers working in the fields of polymer technology, processing and engineering, enabling them to improve manufacture and testing methods, and to benefit fully from applications. The book also provides industrial and academic researchers with a comprehensive and up-to-date understanding of conductive composites and related issues. - Explains the methods used in the manufacture and testing of conductive composites, and in the modeling of electrical conductivity - Contains specialized information on the full range of applications for conductive composites, including conductive adhesives or pastes - Brings scientists, engineers and researchers up-to-date with the latest advances in the field
Techniques for Protecting Overhead Lines in Winter Conditions
Author: Masoud Farzaneh
Publisher: Springer Nature
ISBN: 3030874559
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
This book offers a comprehensive review of the various options for improving the performance of overhead power lines in winter conditions, taking into account both mechanical and electrical aspects. Experience within the CIGRE community reveals many strategies to protect overhead power lines from damage caused by heavy build-up of ice and snow or electrical issues such as insulator icing flashovers. The initial approach is to consider the predicted ice loads from the available databases. This is supplemented with some fundamental aspects of icing physics that affect accretion rate as well as factors in ice shedding on traditional (metal, ceramic) and novel treated surfaces. These ice physics concepts structure the ways to categorize and evaluate methods to reduce or prevent icing on conductors and ground wires or to prevent flashover of insulators. Many utilities in cold climate regions have developed and used methods and strategies to reduce ice loads using anti-icing (AI) and / or de-icing (DI) methods. In general, AI methods are used before or early during ice build-up, while DI methods are activated during and sometimes after ice build-up. The book describes and discusses some historical, operational, or potential AI / DI systems in the ice physics context. This supports a comprehensive review of AI coatings including concepts, relevant material properties, application methods, and finally test methods for characterizing the long-term performance.
Publisher: Springer Nature
ISBN: 3030874559
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
This book offers a comprehensive review of the various options for improving the performance of overhead power lines in winter conditions, taking into account both mechanical and electrical aspects. Experience within the CIGRE community reveals many strategies to protect overhead power lines from damage caused by heavy build-up of ice and snow or electrical issues such as insulator icing flashovers. The initial approach is to consider the predicted ice loads from the available databases. This is supplemented with some fundamental aspects of icing physics that affect accretion rate as well as factors in ice shedding on traditional (metal, ceramic) and novel treated surfaces. These ice physics concepts structure the ways to categorize and evaluate methods to reduce or prevent icing on conductors and ground wires or to prevent flashover of insulators. Many utilities in cold climate regions have developed and used methods and strategies to reduce ice loads using anti-icing (AI) and / or de-icing (DI) methods. In general, AI methods are used before or early during ice build-up, while DI methods are activated during and sometimes after ice build-up. The book describes and discusses some historical, operational, or potential AI / DI systems in the ice physics context. This supports a comprehensive review of AI coatings including concepts, relevant material properties, application methods, and finally test methods for characterizing the long-term performance.
The Power of Artificial Intelligence for the Next-Generation Oil and Gas Industry
Author: Pethuru Raj Chelliah
Publisher: John Wiley & Sons
ISBN: 1119985609
Category : Computers
Languages : en
Pages : 516
Book Description
The Power of Artificial Intelligence for the Next-Generation Oil and Gas Industry Comprehensive resource describing how operations, outputs, and offerings of the oil and gas industry can improve via advancements in AI The Power of Artificial Intelligence for the Next-Generation Oil and Gas Industry describes the proven and promising digital technologies and tools available to empower the oil and gas industry to be future-ready. It shows how the widely reported limitations of the oil and gas industry are being nullified through the application of breakthrough digital technologies and how the convergence of digital technologies helps create new possibilities and opportunities to take this industry to its next level. The text demonstrates how scores of proven digital technologies, especially in AI, are useful in elegantly fulfilling complicated requirements such as process optimization, automation and orchestration, real-time data analytics, productivity improvement, employee safety, predictive maintenance, yield prediction, and accurate asset management for the oil and gas industry. The text differentiates and delivers sophisticated use cases for the various stakeholders, providing easy-to-understand information to accurately utilize proven technologies towards achieving real and sustainable industry transformation. The Power of Artificial Intelligence for the Next-Generation Oil and Gas Industry includes information on: How various machine and deep learning (ML/DL) algorithms, the prime modules of AI, empower AI systems to deliver on their promises and potential Key use cases of computer vision (CV) and natural language processing (NLP) as they relate to the oil and gas industry Smart leverage of AI, the Industrial Internet of Things (IIoT), cyber physical systems, and 5G communication Event-driven architecture (EDA), microservices architecture (MSA), blockchain for data and device security, and digital twins Clearly expounding how the power of AI and other allied technologies can be meticulously leveraged by the oil and gas industry, The Power of Artificial Intelligence for the Next-Generation Oil and Gas Industry is an essential resource for students, scholars, IT professionals, and business leaders in many different intersecting fields.
Publisher: John Wiley & Sons
ISBN: 1119985609
Category : Computers
Languages : en
Pages : 516
Book Description
The Power of Artificial Intelligence for the Next-Generation Oil and Gas Industry Comprehensive resource describing how operations, outputs, and offerings of the oil and gas industry can improve via advancements in AI The Power of Artificial Intelligence for the Next-Generation Oil and Gas Industry describes the proven and promising digital technologies and tools available to empower the oil and gas industry to be future-ready. It shows how the widely reported limitations of the oil and gas industry are being nullified through the application of breakthrough digital technologies and how the convergence of digital technologies helps create new possibilities and opportunities to take this industry to its next level. The text demonstrates how scores of proven digital technologies, especially in AI, are useful in elegantly fulfilling complicated requirements such as process optimization, automation and orchestration, real-time data analytics, productivity improvement, employee safety, predictive maintenance, yield prediction, and accurate asset management for the oil and gas industry. The text differentiates and delivers sophisticated use cases for the various stakeholders, providing easy-to-understand information to accurately utilize proven technologies towards achieving real and sustainable industry transformation. The Power of Artificial Intelligence for the Next-Generation Oil and Gas Industry includes information on: How various machine and deep learning (ML/DL) algorithms, the prime modules of AI, empower AI systems to deliver on their promises and potential Key use cases of computer vision (CV) and natural language processing (NLP) as they relate to the oil and gas industry Smart leverage of AI, the Industrial Internet of Things (IIoT), cyber physical systems, and 5G communication Event-driven architecture (EDA), microservices architecture (MSA), blockchain for data and device security, and digital twins Clearly expounding how the power of AI and other allied technologies can be meticulously leveraged by the oil and gas industry, The Power of Artificial Intelligence for the Next-Generation Oil and Gas Industry is an essential resource for students, scholars, IT professionals, and business leaders in many different intersecting fields.
Graph Database and Graph Computing for Power System Analysis
Author: Renchang Dai
Publisher: John Wiley & Sons
ISBN: 1119903866
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
Graph Database and Graph Computing for Power System Analysis Understand a new way to model power systems with this comprehensive and practical guide Graph databases have become one of the essential tools for managing large data systems. Their structure improves over traditional table-based relational databases in that it reconciles more closely to the inherent physics of a power system, enabling it to model the components and the network of a power system in an organic way. The authors’ pioneering research has demonstrated the effectiveness and the potential of graph data management and graph computing to transform power system analysis. Graph Database and Graph Computing for Power System Analysis presents a comprehensive and accessible introduction to this research and its emerging applications. Programs and applications conventionally modeled for traditional relational databases are reconceived here to incorporate graph computing. The result is a detailed guide which demonstrates the utility and flexibility of this cutting-edge technology. The book’s readers will also find: Design configurations for a graph-based program to solve linear equations, differential equations, optimization problems, and more Detailed demonstrations of graph-based topology analysis, state estimation, power flow analysis, security-constrained economic dispatch, automatic generation control, small-signal stability, transient stability, and other concepts, analysis, and applications An authorial team with decades of experience in software design and power systems analysis Graph Database and Graph Computing for Power System Analysis is essential for researchers and academics in power systems analysis and energy-related fields, as well as for advanced graduate students looking to understand this particular set of technologies.
Publisher: John Wiley & Sons
ISBN: 1119903866
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
Graph Database and Graph Computing for Power System Analysis Understand a new way to model power systems with this comprehensive and practical guide Graph databases have become one of the essential tools for managing large data systems. Their structure improves over traditional table-based relational databases in that it reconciles more closely to the inherent physics of a power system, enabling it to model the components and the network of a power system in an organic way. The authors’ pioneering research has demonstrated the effectiveness and the potential of graph data management and graph computing to transform power system analysis. Graph Database and Graph Computing for Power System Analysis presents a comprehensive and accessible introduction to this research and its emerging applications. Programs and applications conventionally modeled for traditional relational databases are reconceived here to incorporate graph computing. The result is a detailed guide which demonstrates the utility and flexibility of this cutting-edge technology. The book’s readers will also find: Design configurations for a graph-based program to solve linear equations, differential equations, optimization problems, and more Detailed demonstrations of graph-based topology analysis, state estimation, power flow analysis, security-constrained economic dispatch, automatic generation control, small-signal stability, transient stability, and other concepts, analysis, and applications An authorial team with decades of experience in software design and power systems analysis Graph Database and Graph Computing for Power System Analysis is essential for researchers and academics in power systems analysis and energy-related fields, as well as for advanced graduate students looking to understand this particular set of technologies.
Introduction to Modern Analysis of Electric Machines and Drives
Author: Paul C. Krause
Publisher: John Wiley & Sons
ISBN: 1119908159
Category : Science
Languages : en
Pages : 276
Book Description
Introduction to Modern Analysis of Electric Machines and Drives Comprehensive resource introducing magnetic circuits and rotating electric machinery, including models and discussions of control techniques Introduction to Modern Analysis of Electric Machines and Drives is written for the junior or senior student in Electrical Engineering and covers the essential topic of machine analysis for those interested in power systems or drives engineering. The analysis contained in the text is based on Tesla’s rotating magnetic field and reference frame theory, which comes from Tesla’s work and is presented for the first time in an easy to understand format for the typical student. Since the stators of synchronous and induction machines are the same for analysis purposes, they are analyzed just once. Only the rotors are different and therefore analyzed separately. This approach makes it possible to cover the analysis efficiently and concisely without repeating derivations. In fact, the synchronous generator equations are obtained from the equivalent circuit, which is obtained from work in other chapters without any derivation of equations, which differentiates Introduction to Modern Analysis of Electric Machines and Drives from all other textbooks in this area. Topics explored by the two highly qualified authors in Introduction to Modern Analysis of Electric Machines and Drives include: Common analysis tools, covering steady-state phasor calculations, stationary magnetically linear systems, winding configurations, and two- and three-phase stators Analysis of the symmetrical stator, covering the change of variables in two- and three-phase transformations and more Symmetrical induction machines, covering symmetrical two-pole two-phase rotor windings, electromagnetic force and torque, and p-pole machines Direct current machines and drives, covering commutation, voltage and torque equations, permanent-magnet DC machines, and DC drives Introduction to Modern Analysis of Electric Machines and Drives is appropriate as either a first or second course in the power and drives area. Once the reader has covered the material in this book, they will have a sufficient background to start advanced study in the power systems or drives areas.
Publisher: John Wiley & Sons
ISBN: 1119908159
Category : Science
Languages : en
Pages : 276
Book Description
Introduction to Modern Analysis of Electric Machines and Drives Comprehensive resource introducing magnetic circuits and rotating electric machinery, including models and discussions of control techniques Introduction to Modern Analysis of Electric Machines and Drives is written for the junior or senior student in Electrical Engineering and covers the essential topic of machine analysis for those interested in power systems or drives engineering. The analysis contained in the text is based on Tesla’s rotating magnetic field and reference frame theory, which comes from Tesla’s work and is presented for the first time in an easy to understand format for the typical student. Since the stators of synchronous and induction machines are the same for analysis purposes, they are analyzed just once. Only the rotors are different and therefore analyzed separately. This approach makes it possible to cover the analysis efficiently and concisely without repeating derivations. In fact, the synchronous generator equations are obtained from the equivalent circuit, which is obtained from work in other chapters without any derivation of equations, which differentiates Introduction to Modern Analysis of Electric Machines and Drives from all other textbooks in this area. Topics explored by the two highly qualified authors in Introduction to Modern Analysis of Electric Machines and Drives include: Common analysis tools, covering steady-state phasor calculations, stationary magnetically linear systems, winding configurations, and two- and three-phase stators Analysis of the symmetrical stator, covering the change of variables in two- and three-phase transformations and more Symmetrical induction machines, covering symmetrical two-pole two-phase rotor windings, electromagnetic force and torque, and p-pole machines Direct current machines and drives, covering commutation, voltage and torque equations, permanent-magnet DC machines, and DC drives Introduction to Modern Analysis of Electric Machines and Drives is appropriate as either a first or second course in the power and drives area. Once the reader has covered the material in this book, they will have a sufficient background to start advanced study in the power systems or drives areas.
Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems
Author: Jaeseok Choi
Publisher: John Wiley & Sons
ISBN: 1119684137
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems Discover how modern techniques have shaped complex power system expansion planning with this one-stop resource from two experts in the field Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems delivers a comprehensive collection of innovative approaches to the probabilistic planning of generation and transmission systems under uncertainties. The book includes renewables and energy storage calculations when using probabilistic and deterministic reliability techniques to assess system performance from a long-term expansion planning viewpoint. Divided into two sections, the book first covers topics related to Generation Expansion Planning, with chapters on cost assessment, methodology and optimization, and more. The second and final section provides information on Transmission System Expansion Planning, with chapters on reliability constraints, probabilistic production cost simulation, and more. Probabilistic Power System Expansion Planning compares the optimization and methodology across dynamic, linear, and integer programming and explores the branch and bound algorithm. Along with case studies to demonstrate how the techniques described within have been applied in complex power system expansion planning problems, readers will enjoy: A thorough discussion of generation expansion planning, including cost assessment, methodology and optimization, and probabilistic production cost An exploration of transmission system expansion planning, including the branch and bound algorithm, probabilistic production cost simulation for TEP, and TEP with reliability constraints An examination of fuzzy decision making applied to transmission system expansion planning A treatment of probabilistic reliability-based grid expansion planning of power systems including wind turbine generators Perfect for power and energy systems designers, planners, operators, consultants, practicing engineers, software developers, and researchers, Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems will also earn a place in the libraries of practicing engineers who regularly deal with optimization problems.
Publisher: John Wiley & Sons
ISBN: 1119684137
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems Discover how modern techniques have shaped complex power system expansion planning with this one-stop resource from two experts in the field Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems delivers a comprehensive collection of innovative approaches to the probabilistic planning of generation and transmission systems under uncertainties. The book includes renewables and energy storage calculations when using probabilistic and deterministic reliability techniques to assess system performance from a long-term expansion planning viewpoint. Divided into two sections, the book first covers topics related to Generation Expansion Planning, with chapters on cost assessment, methodology and optimization, and more. The second and final section provides information on Transmission System Expansion Planning, with chapters on reliability constraints, probabilistic production cost simulation, and more. Probabilistic Power System Expansion Planning compares the optimization and methodology across dynamic, linear, and integer programming and explores the branch and bound algorithm. Along with case studies to demonstrate how the techniques described within have been applied in complex power system expansion planning problems, readers will enjoy: A thorough discussion of generation expansion planning, including cost assessment, methodology and optimization, and probabilistic production cost An exploration of transmission system expansion planning, including the branch and bound algorithm, probabilistic production cost simulation for TEP, and TEP with reliability constraints An examination of fuzzy decision making applied to transmission system expansion planning A treatment of probabilistic reliability-based grid expansion planning of power systems including wind turbine generators Perfect for power and energy systems designers, planners, operators, consultants, practicing engineers, software developers, and researchers, Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems will also earn a place in the libraries of practicing engineers who regularly deal with optimization problems.
Energy Processing and Smart Grid
Author: James A. Momoh
Publisher: John Wiley & Sons
ISBN: 1119376238
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
The first book in the field to incorporate fundamentals of energy systems and their applications to smart grid, along with advanced topics in modeling and control This book provides an overview of how multiple sources and loads are connected via power electronic devices. Issues of storage technologies are discussed, and a comparison summary is given to facilitate the design and selection of storage types. The need for real-time measurement and controls are pertinent in future grid, and this book dedicates several chapters to real-time measurements such as PMU, smart meters, communication scheme, and protocol and standards for processing and controls of energy options. Organized into nine sections, Energy Processing for the Smart Grid gives an introduction to the energy processing concepts/topics needed by students in electrical engineering or non-electrical engineering who need to work in areas of future grid development. It covers such modern topics as renewable energy, storage technologies, inverter and converter, power electronics, and metering and control for microgrid systems. In addition, this text: Provides the interface between the classical machines courses with current trends in energy processing and smart grid Details an understanding of three-phase networks, which is needed to determine voltages, currents, and power from source to sink under different load models and network configurations Introduces different energy sources including renewable and non-renewable energy resources with appropriate modeling characteristics and performance measures Covers the conversion and processing of these resources to meet different DC and AC load requirements Provides an overview and a case study of how multiple sources and loads are connected via power electronic devices Benefits most policy makers, students and manufacturing and practicing engineers, given the new trends in energy revolution and the desire to reduce carbon output Energy Processing for the Smart Grid is a helpful text for undergraduates and first year graduate students in a typical engineering program who have already taken network analysis and electromagnetic courses.
Publisher: John Wiley & Sons
ISBN: 1119376238
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
The first book in the field to incorporate fundamentals of energy systems and their applications to smart grid, along with advanced topics in modeling and control This book provides an overview of how multiple sources and loads are connected via power electronic devices. Issues of storage technologies are discussed, and a comparison summary is given to facilitate the design and selection of storage types. The need for real-time measurement and controls are pertinent in future grid, and this book dedicates several chapters to real-time measurements such as PMU, smart meters, communication scheme, and protocol and standards for processing and controls of energy options. Organized into nine sections, Energy Processing for the Smart Grid gives an introduction to the energy processing concepts/topics needed by students in electrical engineering or non-electrical engineering who need to work in areas of future grid development. It covers such modern topics as renewable energy, storage technologies, inverter and converter, power electronics, and metering and control for microgrid systems. In addition, this text: Provides the interface between the classical machines courses with current trends in energy processing and smart grid Details an understanding of three-phase networks, which is needed to determine voltages, currents, and power from source to sink under different load models and network configurations Introduces different energy sources including renewable and non-renewable energy resources with appropriate modeling characteristics and performance measures Covers the conversion and processing of these resources to meet different DC and AC load requirements Provides an overview and a case study of how multiple sources and loads are connected via power electronic devices Benefits most policy makers, students and manufacturing and practicing engineers, given the new trends in energy revolution and the desire to reduce carbon output Energy Processing for the Smart Grid is a helpful text for undergraduates and first year graduate students in a typical engineering program who have already taken network analysis and electromagnetic courses.