Micro-, Meso- and Macro-Connectomics of the Brain

Micro-, Meso- and Macro-Connectomics of the Brain PDF Author: Henry Kennedy
Publisher: Springer
ISBN: 3319277774
Category : Medical
Languages : en
Pages : 173

Get Book Here

Book Description
This book has brought together leading investigators who work in the new arena of brain connectomics. This includes ‘macro-connectome’ efforts to comprehensively chart long-distance pathways and functional networks; ‘micro-connectome’ efforts to identify every neuron, axon, dendrite, synapse, and glial process within restricted brain regions; and ‘meso-connectome’ efforts to systematically map both local and long-distance connections using anatomical tracers. This book highlights cutting-edge methods that can accelerate progress in elucidating static ‘hard-wired’ circuits of the brain as well as dynamic interactions that are vital for brain function. The power of connectomic approaches in characterizing abnormal circuits in the many brain disorders that afflict humankind is considered. Experts in computational neuroscience and network theory provide perspectives needed for synthesizing across different scales in space and time. Altogether, this book provides an integrated view of the challenges and opportunities in deciphering brain circuits in health and disease.

Micro-, Meso- and Macro-Connectomics of the Brain

Micro-, Meso- and Macro-Connectomics of the Brain PDF Author: Henry Kennedy
Publisher: Springer
ISBN: 3319277774
Category : Medical
Languages : en
Pages : 173

Get Book Here

Book Description
This book has brought together leading investigators who work in the new arena of brain connectomics. This includes ‘macro-connectome’ efforts to comprehensively chart long-distance pathways and functional networks; ‘micro-connectome’ efforts to identify every neuron, axon, dendrite, synapse, and glial process within restricted brain regions; and ‘meso-connectome’ efforts to systematically map both local and long-distance connections using anatomical tracers. This book highlights cutting-edge methods that can accelerate progress in elucidating static ‘hard-wired’ circuits of the brain as well as dynamic interactions that are vital for brain function. The power of connectomic approaches in characterizing abnormal circuits in the many brain disorders that afflict humankind is considered. Experts in computational neuroscience and network theory provide perspectives needed for synthesizing across different scales in space and time. Altogether, this book provides an integrated view of the challenges and opportunities in deciphering brain circuits in health and disease.

Handbook of Brain Microcircuits

Handbook of Brain Microcircuits PDF Author: Gordon M. Shepherd
Publisher: Oxford University Press
ISBN: 0190636114
Category : Medical
Languages : en
Pages : 625

Get Book Here

Book Description
In order to focus on principles, each chapter in this work is brief, organized around 1-3 wiring diagrams of the key circuits, with several pages of text that distil the functional significance of each microcircuit

Inhibitory Circuits of the Cortex

Inhibitory Circuits of the Cortex PDF Author: Bassam V. Atallah
Publisher:
ISBN: 9781124545011
Category :
Languages : en
Pages : 140

Get Book Here

Book Description
We are surrounded by a world, which makes sense, only because we make sense of it. At every instant in our waking life we estimate the state of the world based on sensory data, then we reshape the world to meet our goals. How are these sensations encoded, goals represented and action computed? To answer these questions we dissect the biological circuitry in our brains that seamlessly performs these computations. To study the dynamics of neural circuits, we specifically focus on the role inhibition in shaping signal processing. This work examines how inhibitory circuits process increasingly complex forms of afferent input. First, we characterize and model local circuit responses to brief impulses of afferent activity. We find that local circuits generate feedforward inhibition in the first few milliseconds after an afferent impulse. This inhibition adjusts the excitability of the local population normalizing it to the afferent excitation level. Then, in the next few milliseconds, as individual local pyramidal cells spike they immediately recruit a distinct recurrent inhibitory circuit. This feedback circuit is extremely sensitive responding with negative feedback when even a single local pyramidal cell is active. By modeling the circuit dynamics during these stages in cortical processing we quantitatively demonstrate that the feedforward and feedback inhibitory circuits are tuned to be both sensitive to sparse activity and yet maintain fidelity with which a cortical circuit represents inputs at high activity levels. Next, the role inhibition during spontaneous rhythmic activity is dissected. Our results demonstrate that by rapidly balancing excitation with inhibition, cortical networks can swiftly modulate rhythms over a wide band of frequencies. Finally, we investigate the role of a distinct type of inhibitory interneuron during the first stage of cortical visual processing. Using optogenetics to either enhance or suppress parvalbumin positive interneurons spiking, we demonstrate that these neurons play a key role in modulating the selectivity of responses in primary visual cortex. Together, these results demonstrate the multifaceted role inhibitory circuits play in signal processing and shaping cortical computation; adding to our communal effort to develop a complete picture of how neural circuitry performs computations and encodes sensation.

Cortical Circuits

Cortical Circuits PDF Author: WHITE
Publisher: Springer Science & Business Media
ISBN: 1468487213
Category : Medical
Languages : en
Pages : 299

Get Book Here

Book Description
This elegant book presents current evidence on the organization of the mammalian cerebral cortex. The focus on synapses and their function provides the basis for understanding how this critical part of the brain could work. Dr. White and his colleague Dr. Keller have collated an impressive mass of material. This makes the crucial information accessible and coherent. Dr. White pioneered an area of investigation that to most others, and occasionally to himself, seemed a bottomless pit of painstaking at tention to detail for the identification and enumeration of cortical syn apses. I do not recall that he or anyone else suspected, when he began to publish his now classic papers, that the work would be central to an accelerating convergence of information and ideas from neurobiology and computer science, especially artificial intelligence (AI) (Rumelhart and McClelland, 1986). The brain is the principal organ responsible for the adaptive capacities of animals. What has impressed students of biology, of medicine, and, to an extent, of philosophy is the correlation between the prominence of the cerebral cortex and the adaptive "complexity" of a particular spe cies. Most agree that the cortex is what sets Homo sapiens apart from other species quantitatively and qualitatively (Rakic, 1988). This is summarized in the first chapter.

Corticonics

Corticonics PDF Author: M. Abeles
Publisher: Cambridge University Press
ISBN: 9780521376174
Category : Science
Languages : en
Pages : 298

Get Book Here

Book Description
Understanding how the brain works is probably the greatest scientific and intellectual challenge of our generation. The cerebral cortex is the instrument by which we carry the most complex mental functions. Fortunately, there exists an immense body of knowledge concerning both cortical structure and the properties of single neurons in the cortex. With the advent of the supercomputer, there has been increased interest in neural network modeling. What is needed is a new approach to an understanding of the mammalian cerebral cortex that will provide a link between the physiological description and the computer model. This book meets that need by combining anatomy, physiology, and modeling to achieve a quantitative description of cortical function. The material is presented didactically, starting with descriptive anatomy and comprehensively examining all aspects of modeling. The book gradually leads the reader from the macroscopic cortical anatomy and standard electrophysiological properties of single neurons to neural network models and synfire chains. The most modern trends in neural network modeling are explored.

Inhibitory Circuits in the Olfactory Cortex

Inhibitory Circuits in the Olfactory Cortex PDF Author: Caleb C. A. Stokes
Publisher:
ISBN: 9781124665429
Category :
Languages : en
Pages : 135

Get Book Here

Book Description
In sensory areas of cortex, inhibitory neurons play a critical role in regulating the activity of principal cells in space and time. The diversity of intrinsic electrical properties and connectivity patterns among inhibitory cells suggests that different cell types contribute specific functions to the processing of sensory information by cortical circuits. In pyramidal cells of primary olfactory (piriform) cortex, odors evoke widespread and broadly-tuned inhibition, but the cells producing this inhibition are not known. Here, using acute slices of piriform cortex, we identify three inhibitory circuits that are recruited by activation of sensory afferents and act over distinct spatial and temporal domains. We find that physiologically realistic burst stimulation of mitral and tufted (M/T) cell axons results in early but transient dendritic inhibition progressing to somatic feedback inhibition in pyramidal cells of piriform cortex. Interneurons in layer 1a (L1a) receive highly convergent M/T cell input and govern feedforward inhibition onto the dendrites, but short-term synaptic depression decreases their influence as the burst progresses. Dendritic inhibition from L1a interneurons is branch-specific and locally blocks the calcium transients associated with back-propagating action potentials. The late-onset feedback inhibitory circuit is composed of layer 3 (L3) fast-spiking and low threshold-spiking cells that target pyramidal cell bodies and basal dendrites. L3 interneurons are highly interconnected with local pyramidal cells and we demonstrate that activation of pyramidal cells leads to recurrent inhibition that dominates excitation. Our results reveal the diversity of inhibitory circuits in olfactory cortex and suggest that separate classes of interneurons may have distinct functional roles regulating spike timing, odor tuning, and plasticity. This work defines a basic set of features by which inhibitory circuits can be identified in piriform cortex and demonstrates a diversity of functional roles played by distinct interneuron cell types. Our findings offer testable hypotheses regarding the influence of specific inhibitory circuits in olfactory information processing and odor representations in the piriform cortex.

Inhibitory Function in Auditory Processing

Inhibitory Function in Auditory Processing PDF Author: R. Michael Burger
Publisher: Frontiers Media SA
ISBN: 2889196674
Category : Auditory perception
Languages : en
Pages : 233

Get Book Here

Book Description
There seems little doubt that from the earliest evolutionary beginnings, inhibition has been a fundamental feature of neuronal circuits - even the simplest life forms sense and interact with their environment, orienting or approaching positive stimuli while avoiding aversive stimuli. This requires internal signals that both drive and suppress behavior. Traditional descriptions of inhibition sometimes limit its role to the suppression of action potential generation. This view fails to capture the vast breadth of inhibitory function now known to exist in neural circuits. A modern perspective on inhibitory signaling comprises a multitude of mechanisms. For example, inhibition can act via a shunting mechanism to speed the membrane time constant and reduce synaptic integration time. It can act via G-protein coupled receptors to initiate second messenger cascades that influence synaptic strength. Inhibition contributes to rhythm generation and can even activate ion channels that mediate inward currents to drive action potential generation. Inhibition also appears to play a role in shaping the properties of neural circuitry over longer time scales. Experience-dependent synaptic plasticity in developing and mature neural circuits underlies behavioral memory and has been intensively studied over the past decade. At excitatory synapses, adjustments of synaptic efficacy are regulated predominantly by changes in the number and function of postsynaptic glutamate receptors. There is, however, increasing evidence for inhibitory modulation of target neuron excitability playing key roles in experience-dependent plasticity. One reason for our limited knowledge about plasticity at inhibitory synapses is that in most circuits, neurons receive convergent inputs from disparate sources. This problem can be overcome by investigating inhibitory circuits in a system with well-defined inhibitory nuclei and projections, each with a known computational function. Compared to other sensory systems, the auditory system has evolved a large number of subthalamic nuclei each devoted to processing distinct features of sound stimuli. This information once extracted is then re-assembled to form the percept the acoustic world around us. The well-understood function of many of these auditory nuclei has enhanced our understanding of inhibition's role in shaping their responses from easily distinguished inhibitory inputs. In particular, neurons devoted to processing the location of sound sources receive a complement of discrete inputs for which in vivo activity and function are well understood. Investigation of these areas has led to significant advances in understanding the development, physiology, and mechanistic underpinnings of inhibition that apply broadly to neuroscience. In this series of papers, we provide an authoritative resource for those interested in exploring the variety of inhibitory circuits and their function in auditory processing. We present original research and focused reviews touching on development, plasticity, anatomy, and evolution of inhibitory circuitry. We hope our readers will find these papers valuable and inspirational to their own research endeavors.

Inhibitory Synaptic Plasticity

Inhibitory Synaptic Plasticity PDF Author: Melanie A. Woodin
Publisher: Springer Science & Business Media
ISBN: 1441969780
Category : Medical
Languages : en
Pages : 191

Get Book Here

Book Description
This volume will explore the most recent findings on cellular mechanisms of inhibitory plasticity and its functional role in shaping neuronal circuits, their rewiring in response to experience, drug addiction and in neuropathology. Inhibitory Synaptic Plasticity will be of particular interest to neuroscientists and neurophysiologists.

Developmental Plasticity of Inhibitory Circuitry

Developmental Plasticity of Inhibitory Circuitry PDF Author: Sarah L. Pallas
Publisher: Springer
ISBN: 1441912436
Category : Medical
Languages : en
Pages : 192

Get Book Here

Book Description
Neuroscience has long been focused on understanding neural plasticity in both development and adulthood. Experimental work in this area has focused almost entirely on plasticity at excitatory synapses. A growing body of evidence suggests that plasticity at inhibitory GABAergic and glycinergic synapses is of critical importance during both development and aging. The book brings together the work of researchers investigating inhibitory plasticity at many levels of analysis and in several different preparations. This topic is of wide relevance across a number of different areas of research in neuroscience and neurology. Medical problems such as epilepsy, mental illness, drug abuse, and movement disorders can result from malfunctioning inhibitory circuits. Further, the maturation of inhibitory circuits may trigger the onset of critical periods of neural circuit plasticity, raising the possibility that such plastici periods could be reactivated for medical benefit by manipulating inhibitory circuitry.

Excitatory-Inhibitory Balance

Excitatory-Inhibitory Balance PDF Author: Takao K. Hensch
Publisher: Springer Science & Business Media
ISBN: 1461500397
Category : Medical
Languages : en
Pages : 286

Get Book Here

Book Description
A new perspective on brain function depends upon an understanding of the interaction and integration of excitation and inhibition. A recent surge in research activity focused on inhibitory interneurons now makes a more balanced view possible. Technological advances such as improved imaging methods, visualized patch-clamp recording, multiplex single-cell PCR, and gene-targeted deletion or knock-in mice are some of the novel tools featured in this book. This book will provide an integrated view of neuron function, operating in a balanced regime of excitation and inhibition. It is a timely contribution emphasizing how this balance is established, maintained, and modified from the molecular to system levels. The broad spectrum of topics from molecular to cellular and system/computational neuroscience will appeal to a wide audience of advanced graduate students, post-docs, and faculty. Moreover, this book this book features active young researchers from around the world, who are currently educating the brain scientists of tomorrow.