Author: Solomon Kullback
Publisher: Courier Corporation
ISBN: 0486142043
Category : Mathematics
Languages : en
Pages : 436
Book Description
Highly useful text studies logarithmic measures of information and their application to testing statistical hypotheses. Includes numerous worked examples and problems. References. Glossary. Appendix. 1968 2nd, revised edition.
Information Theory and Statistics
Author: Solomon Kullback
Publisher: Courier Corporation
ISBN: 0486142043
Category : Mathematics
Languages : en
Pages : 436
Book Description
Highly useful text studies logarithmic measures of information and their application to testing statistical hypotheses. Includes numerous worked examples and problems. References. Glossary. Appendix. 1968 2nd, revised edition.
Publisher: Courier Corporation
ISBN: 0486142043
Category : Mathematics
Languages : en
Pages : 436
Book Description
Highly useful text studies logarithmic measures of information and their application to testing statistical hypotheses. Includes numerous worked examples and problems. References. Glossary. Appendix. 1968 2nd, revised edition.
Information Theory and Statistics
Author: Imre Csiszár
Publisher: Now Publishers Inc
ISBN: 9781933019055
Category : Computers
Languages : en
Pages : 128
Book Description
Information Theory and Statistics: A Tutorial is concerned with applications of information theory concepts in statistics, in the finite alphabet setting. The topics covered include large deviations, hypothesis testing, maximum likelihood estimation in exponential families, analysis of contingency tables, and iterative algorithms with an "information geometry" background. Also, an introduction is provided to the theory of universal coding, and to statistical inference via the minimum description length principle motivated by that theory. The tutorial does not assume the reader has an in-depth knowledge of Information Theory or statistics. As such, Information Theory and Statistics: A Tutorial, is an excellent introductory text to this highly-important topic in mathematics, computer science and electrical engineering. It provides both students and researchers with an invaluable resource to quickly get up to speed in the field.
Publisher: Now Publishers Inc
ISBN: 9781933019055
Category : Computers
Languages : en
Pages : 128
Book Description
Information Theory and Statistics: A Tutorial is concerned with applications of information theory concepts in statistics, in the finite alphabet setting. The topics covered include large deviations, hypothesis testing, maximum likelihood estimation in exponential families, analysis of contingency tables, and iterative algorithms with an "information geometry" background. Also, an introduction is provided to the theory of universal coding, and to statistical inference via the minimum description length principle motivated by that theory. The tutorial does not assume the reader has an in-depth knowledge of Information Theory or statistics. As such, Information Theory and Statistics: A Tutorial, is an excellent introductory text to this highly-important topic in mathematics, computer science and electrical engineering. It provides both students and researchers with an invaluable resource to quickly get up to speed in the field.
Information Theory and Statistical Learning
Author: Frank Emmert-Streib
Publisher: Springer Science & Business Media
ISBN: 0387848150
Category : Computers
Languages : en
Pages : 443
Book Description
This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.
Publisher: Springer Science & Business Media
ISBN: 0387848150
Category : Computers
Languages : en
Pages : 443
Book Description
This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.
Elements of Information Theory
Author: Thomas M. Cover
Publisher: John Wiley & Sons
ISBN: 1118585771
Category : Computers
Languages : en
Pages : 788
Book Description
The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.
Publisher: John Wiley & Sons
ISBN: 1118585771
Category : Computers
Languages : en
Pages : 788
Book Description
The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.
Reliability Criteria in Information Theory and in Statistical Hypothesis Testing
Author: Evgueni A. Haroutunian
Publisher: Now Publishers Inc
ISBN: 1601980469
Category : Computers
Languages : en
Pages : 183
Book Description
This monograph briefly formulates fundamental notions and results of Shannon theory on reliable transmission via coding and gives a survey of results obtained in last two-three decades by the authors.
Publisher: Now Publishers Inc
ISBN: 1601980469
Category : Computers
Languages : en
Pages : 183
Book Description
This monograph briefly formulates fundamental notions and results of Shannon theory on reliable transmission via coding and gives a survey of results obtained in last two-three decades by the authors.
Quantum Information Theory and Quantum Statistics
Author: Dénes Petz
Publisher: Springer Science & Business Media
ISBN: 3540746366
Category : Science
Languages : en
Pages : 221
Book Description
This concise and readable book addresses primarily readers with a background in classical statistical physics and introduces quantum mechanical notions as required. Conceived as a primer to bridge the gap between statistical physics and quantum information, it emphasizes concepts and thorough discussions of the fundamental notions and prepares the reader for deeper studies, not least through a selection of well chosen exercises.
Publisher: Springer Science & Business Media
ISBN: 3540746366
Category : Science
Languages : en
Pages : 221
Book Description
This concise and readable book addresses primarily readers with a background in classical statistical physics and introduces quantum mechanical notions as required. Conceived as a primer to bridge the gap between statistical physics and quantum information, it emphasizes concepts and thorough discussions of the fundamental notions and prepares the reader for deeper studies, not least through a selection of well chosen exercises.
Entropy and Information Theory
Author: Robert M. Gray
Publisher: Springer Science & Business Media
ISBN: 1475739826
Category : Computers
Languages : en
Pages : 346
Book Description
This book is devoted to the theory of probabilistic information measures and their application to coding theorems for information sources and noisy channels. The eventual goal is a general development of Shannon's mathematical theory of communication, but much of the space is devoted to the tools and methods required to prove the Shannon coding theorems. These tools form an area common to ergodic theory and information theory and comprise several quantitative notions of the information in random variables, random processes, and dynamical systems. Examples are entropy, mutual information, conditional entropy, conditional information, and discrimination or relative entropy, along with the limiting normalized versions of these quantities such as entropy rate and information rate. Much of the book is concerned with their properties, especially the long term asymptotic behavior of sample information and expected information. This is the only up-to-date treatment of traditional information theory emphasizing ergodic theory.
Publisher: Springer Science & Business Media
ISBN: 1475739826
Category : Computers
Languages : en
Pages : 346
Book Description
This book is devoted to the theory of probabilistic information measures and their application to coding theorems for information sources and noisy channels. The eventual goal is a general development of Shannon's mathematical theory of communication, but much of the space is devoted to the tools and methods required to prove the Shannon coding theorems. These tools form an area common to ergodic theory and information theory and comprise several quantitative notions of the information in random variables, random processes, and dynamical systems. Examples are entropy, mutual information, conditional entropy, conditional information, and discrimination or relative entropy, along with the limiting normalized versions of these quantities such as entropy rate and information rate. Much of the book is concerned with their properties, especially the long term asymptotic behavior of sample information and expected information. This is the only up-to-date treatment of traditional information theory emphasizing ergodic theory.
Information Theory and the Central Limit Theorem
Author: Oliver Thomas Johnson
Publisher: World Scientific
ISBN: 1860944736
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concerning their behaviour. It brings together results from a number of research papers as well as unpublished material, showing how the techniques can give a unified view of limit theorems.
Publisher: World Scientific
ISBN: 1860944736
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concerning their behaviour. It brings together results from a number of research papers as well as unpublished material, showing how the techniques can give a unified view of limit theorems.
Theory of Games and Statistical Decisions
Author: David A. Blackwell
Publisher: Courier Corporation
ISBN: 0486150895
Category : Mathematics
Languages : en
Pages : 388
Book Description
Evaluating statistical procedures through decision and game theory, as first proposed by Neyman and Pearson and extended by Wald, is the goal of this problem-oriented text in mathematical statistics. First-year graduate students in statistics and other students with a background in statistical theory and advanced calculus will find a rigorous, thorough presentation of statistical decision theory treated as a special case of game theory. The work of Borel, von Neumann, and Morgenstern in game theory, of prime importance to decision theory, is covered in its relevant aspects: reduction of games to normal forms, the minimax theorem, and the utility theorem. With this introduction, Blackwell and Professor Girshick look at: Values and Optimal Strategies in Games; General Structure of Statistical Games; Utility and Principles of Choice; Classes of Optimal Strategies; Fixed Sample-Size Games with Finite Ω and with Finite A; Sufficient Statistics and the Invariance Principle; Sequential Games; Bayes and Minimax Sequential Procedures; Estimation; and Comparison of Experiments. A few topics not directly applicable to statistics, such as perfect information theory, are also discussed. Prerequisites for full understanding of the procedures in this book include knowledge of elementary analysis, and some familiarity with matrices, determinants, and linear dependence. For purposes of formal development, only discrete distributions are used, though continuous distributions are employed as illustrations. The number and variety of problems presented will be welcomed by all students, computer experts, and others using statistics and game theory. This comprehensive and sophisticated introduction remains one of the strongest and most useful approaches to a field which today touches areas as diverse as gambling and particle physics.
Publisher: Courier Corporation
ISBN: 0486150895
Category : Mathematics
Languages : en
Pages : 388
Book Description
Evaluating statistical procedures through decision and game theory, as first proposed by Neyman and Pearson and extended by Wald, is the goal of this problem-oriented text in mathematical statistics. First-year graduate students in statistics and other students with a background in statistical theory and advanced calculus will find a rigorous, thorough presentation of statistical decision theory treated as a special case of game theory. The work of Borel, von Neumann, and Morgenstern in game theory, of prime importance to decision theory, is covered in its relevant aspects: reduction of games to normal forms, the minimax theorem, and the utility theorem. With this introduction, Blackwell and Professor Girshick look at: Values and Optimal Strategies in Games; General Structure of Statistical Games; Utility and Principles of Choice; Classes of Optimal Strategies; Fixed Sample-Size Games with Finite Ω and with Finite A; Sufficient Statistics and the Invariance Principle; Sequential Games; Bayes and Minimax Sequential Procedures; Estimation; and Comparison of Experiments. A few topics not directly applicable to statistics, such as perfect information theory, are also discussed. Prerequisites for full understanding of the procedures in this book include knowledge of elementary analysis, and some familiarity with matrices, determinants, and linear dependence. For purposes of formal development, only discrete distributions are used, though continuous distributions are employed as illustrations. The number and variety of problems presented will be welcomed by all students, computer experts, and others using statistics and game theory. This comprehensive and sophisticated introduction remains one of the strongest and most useful approaches to a field which today touches areas as diverse as gambling and particle physics.
New Foundations for Information Theory
Author: David Ellerman
Publisher: Springer Nature
ISBN: 3030865525
Category : Philosophy
Languages : en
Pages : 121
Book Description
This monograph offers a new foundation for information theory that is based on the notion of information-as-distinctions, being directly measured by logical entropy, and on the re-quantification as Shannon entropy, which is the fundamental concept for the theory of coding and communications. Information is based on distinctions, differences, distinguishability, and diversity. Information sets are defined that express the distinctions made by a partition, e.g., the inverse-image of a random variable so they represent the pre-probability notion of information. Then logical entropy is a probability measure on the information sets, the probability that on two independent trials, a distinction or “dit” of the partition will be obtained. The formula for logical entropy is a new derivation of an old formula that goes back to the early twentieth century and has been re-derived many times in different contexts. As a probability measure, all the compound notions of joint, conditional, and mutual logical entropy are immediate. The Shannon entropy (which is not defined as a measure in the sense of measure theory) and its compound notions are then derived from a non-linear dit-to-bit transform that re-quantifies the distinctions of a random variable in terms of bits—so the Shannon entropy is the average number of binary distinctions or bits necessary to make all the distinctions of the random variable. And, using a linearization method, all the set concepts in this logical information theory naturally extend to vector spaces in general—and to Hilbert spaces in particular—for quantum logical information theory which provides the natural measure of the distinctions made in quantum measurement. Relatively short but dense in content, this work can be a reference to researchers and graduate students doing investigations in information theory, maximum entropy methods in physics, engineering, and statistics, and to all those with a special interest in a new approach to quantum information theory.
Publisher: Springer Nature
ISBN: 3030865525
Category : Philosophy
Languages : en
Pages : 121
Book Description
This monograph offers a new foundation for information theory that is based on the notion of information-as-distinctions, being directly measured by logical entropy, and on the re-quantification as Shannon entropy, which is the fundamental concept for the theory of coding and communications. Information is based on distinctions, differences, distinguishability, and diversity. Information sets are defined that express the distinctions made by a partition, e.g., the inverse-image of a random variable so they represent the pre-probability notion of information. Then logical entropy is a probability measure on the information sets, the probability that on two independent trials, a distinction or “dit” of the partition will be obtained. The formula for logical entropy is a new derivation of an old formula that goes back to the early twentieth century and has been re-derived many times in different contexts. As a probability measure, all the compound notions of joint, conditional, and mutual logical entropy are immediate. The Shannon entropy (which is not defined as a measure in the sense of measure theory) and its compound notions are then derived from a non-linear dit-to-bit transform that re-quantifies the distinctions of a random variable in terms of bits—so the Shannon entropy is the average number of binary distinctions or bits necessary to make all the distinctions of the random variable. And, using a linearization method, all the set concepts in this logical information theory naturally extend to vector spaces in general—and to Hilbert spaces in particular—for quantum logical information theory which provides the natural measure of the distinctions made in quantum measurement. Relatively short but dense in content, this work can be a reference to researchers and graduate students doing investigations in information theory, maximum entropy methods in physics, engineering, and statistics, and to all those with a special interest in a new approach to quantum information theory.