Author: David J. C. MacKay
Publisher: Cambridge University Press
ISBN: 9780521642989
Category : Computers
Languages : en
Pages : 694
Book Description
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Information Theory, Inference and Learning Algorithms
Author: David J. C. MacKay
Publisher: Cambridge University Press
ISBN: 9780521642989
Category : Computers
Languages : en
Pages : 694
Book Description
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Publisher: Cambridge University Press
ISBN: 9780521642989
Category : Computers
Languages : en
Pages : 694
Book Description
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Foundations of Info-metrics
Author: Amos Golan
Publisher: Oxford University Press
ISBN: 0199349525
Category : Business & Economics
Languages : en
Pages : 489
Book Description
Info-metrics is the science of modeling, reasoning, and drawing inferences under conditions of noisy and insufficient information. It is at the intersection of information theory, statistical inference, and decision-making under uncertainty. It plays an important role in helping make informed decisions even when there is inadequate or incomplete information because it provides a framework to process available information with minimal reliance on assumptions that cannot be validated. In this pioneering book, Amos Golan, a leader in info-metrics, focuses on unifying information processing, modeling and inference within a single constrained optimization framework. Foundations of Info-Metrics provides an overview of modeling and inference, rather than a problem specific model, and progresses from the simple premise that information is often insufficient to provide a unique answer for decisions we wish to make. Each decision, or solution, is derived from the available input information along with a choice of inferential procedure. The book contains numerous multidisciplinary applications and case studies, which demonstrate the simplicity and generality of the framework in real world settings. Examples include initial diagnosis at an emergency room, optimal dose decisions, election forecasting, network and information aggregation, weather pattern analyses, portfolio allocation, strategy inference for interacting entities, incorporation of prior information, option pricing, and modeling an interacting social system. Graphical representations illustrate how results can be visualized while exercises and problem sets facilitate extensions. This book is this designed to be accessible for researchers, graduate students, and practitioners across the disciplines.
Publisher: Oxford University Press
ISBN: 0199349525
Category : Business & Economics
Languages : en
Pages : 489
Book Description
Info-metrics is the science of modeling, reasoning, and drawing inferences under conditions of noisy and insufficient information. It is at the intersection of information theory, statistical inference, and decision-making under uncertainty. It plays an important role in helping make informed decisions even when there is inadequate or incomplete information because it provides a framework to process available information with minimal reliance on assumptions that cannot be validated. In this pioneering book, Amos Golan, a leader in info-metrics, focuses on unifying information processing, modeling and inference within a single constrained optimization framework. Foundations of Info-Metrics provides an overview of modeling and inference, rather than a problem specific model, and progresses from the simple premise that information is often insufficient to provide a unique answer for decisions we wish to make. Each decision, or solution, is derived from the available input information along with a choice of inferential procedure. The book contains numerous multidisciplinary applications and case studies, which demonstrate the simplicity and generality of the framework in real world settings. Examples include initial diagnosis at an emergency room, optimal dose decisions, election forecasting, network and information aggregation, weather pattern analyses, portfolio allocation, strategy inference for interacting entities, incorporation of prior information, option pricing, and modeling an interacting social system. Graphical representations illustrate how results can be visualized while exercises and problem sets facilitate extensions. This book is this designed to be accessible for researchers, graduate students, and practitioners across the disciplines.
Model Selection and Multimodel Inference
Author: Kenneth P. Burnham
Publisher: Springer Science & Business Media
ISBN: 0387224564
Category : Mathematics
Languages : en
Pages : 512
Book Description
A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.
Publisher: Springer Science & Business Media
ISBN: 0387224564
Category : Mathematics
Languages : en
Pages : 512
Book Description
A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.
Information, Physics, and Computation
Author: Marc Mézard
Publisher: Oxford University Press
ISBN: 019857083X
Category : Computers
Languages : en
Pages : 584
Book Description
A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.
Publisher: Oxford University Press
ISBN: 019857083X
Category : Computers
Languages : en
Pages : 584
Book Description
A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.
Statistical and Inductive Inference by Minimum Message Length
Author: C.S. Wallace
Publisher: Springer Science & Business Media
ISBN: 9780387237954
Category : Computers
Languages : en
Pages : 456
Book Description
The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.
Publisher: Springer Science & Business Media
ISBN: 9780387237954
Category : Computers
Languages : en
Pages : 456
Book Description
The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.
An Introduction to Lifted Probabilistic Inference
Author: Guy Van den Broeck
Publisher: MIT Press
ISBN: 0262542595
Category : Computers
Languages : en
Pages : 455
Book Description
Recent advances in the area of lifted inference, which exploits the structure inherent in relational probabilistic models. Statistical relational AI (StaRAI) studies the integration of reasoning under uncertainty with reasoning about individuals and relations. The representations used are often called relational probabilistic models. Lifted inference is about how to exploit the structure inherent in relational probabilistic models, either in the way they are expressed or by extracting structure from observations. This book covers recent significant advances in the area of lifted inference, providing a unifying introduction to this very active field. After providing necessary background on probabilistic graphical models, relational probabilistic models, and learning inside these models, the book turns to lifted inference, first covering exact inference and then approximate inference. In addition, the book considers the theory of liftability and acting in relational domains, which allows the connection of learning and reasoning in relational domains.
Publisher: MIT Press
ISBN: 0262542595
Category : Computers
Languages : en
Pages : 455
Book Description
Recent advances in the area of lifted inference, which exploits the structure inherent in relational probabilistic models. Statistical relational AI (StaRAI) studies the integration of reasoning under uncertainty with reasoning about individuals and relations. The representations used are often called relational probabilistic models. Lifted inference is about how to exploit the structure inherent in relational probabilistic models, either in the way they are expressed or by extracting structure from observations. This book covers recent significant advances in the area of lifted inference, providing a unifying introduction to this very active field. After providing necessary background on probabilistic graphical models, relational probabilistic models, and learning inside these models, the book turns to lifted inference, first covering exact inference and then approximate inference. In addition, the book considers the theory of liftability and acting in relational domains, which allows the connection of learning and reasoning in relational domains.
Model Based Inference in the Life Sciences
Author: David R. Anderson
Publisher: Springer Science & Business Media
ISBN: 0387740759
Category : Science
Languages : en
Pages : 203
Book Description
This textbook introduces a science philosophy called "information theoretic" based on Kullback-Leibler information theory. It focuses on a science philosophy based on "multiple working hypotheses" and statistical models to represent them. The text is written for people new to the information-theoretic approaches to statistical inference, whether graduate students, post-docs, or professionals. Readers are however expected to have a background in general statistical principles, regression analysis, and some exposure to likelihood methods. This is not an elementary text as it assumes reasonable competence in modeling and parameter estimation.
Publisher: Springer Science & Business Media
ISBN: 0387740759
Category : Science
Languages : en
Pages : 203
Book Description
This textbook introduces a science philosophy called "information theoretic" based on Kullback-Leibler information theory. It focuses on a science philosophy based on "multiple working hypotheses" and statistical models to represent them. The text is written for people new to the information-theoretic approaches to statistical inference, whether graduate students, post-docs, or professionals. Readers are however expected to have a background in general statistical principles, regression analysis, and some exposure to likelihood methods. This is not an elementary text as it assumes reasonable competence in modeling and parameter estimation.
Information-theoretic causal inference of lexical flow
Author: Johannes Dellert
Publisher: Language Science Press
ISBN: 3961101434
Category : Language Arts & Disciplines
Languages : en
Pages : 385
Book Description
This volume seeks to infer large phylogenetic networks from phonetically encoded lexical data and contribute in this way to the historical study of language varieties. The technical step that enables progress in this case is the use of causal inference algorithms. Sample sets of words from language varieties are preprocessed into automatically inferred cognate sets, and then modeled as information-theoretic variables based on an intuitive measure of cognate overlap. Causal inference is then applied to these variables in order to determine the existence and direction of influence among the varieties. The directed arcs in the resulting graph structures can be interpreted as reflecting the existence and directionality of lexical flow, a unified model which subsumes inheritance and borrowing as the two main ways of transmission that shape the basic lexicon of languages. A flow-based separation criterion and domain-specific directionality detection criteria are developed to make existing causal inference algorithms more robust against imperfect cognacy data, giving rise to two new algorithms. The Phylogenetic Lexical Flow Inference (PLFI) algorithm requires lexical features of proto-languages to be reconstructed in advance, but yields fully general phylogenetic networks, whereas the more complex Contact Lexical Flow Inference (CLFI) algorithm treats proto-languages as hidden common causes, and only returns hypotheses of historical contact situations between attested languages. The algorithms are evaluated both against a large lexical database of Northern Eurasia spanning many language families, and against simulated data generated by a new model of language contact that builds on the opening and closing of directional contact channels as primary evolutionary events. The algorithms are found to infer the existence of contacts very reliably, whereas the inference of directionality remains difficult. This currently limits the new algorithms to a role as exploratory tools for quickly detecting salient patterns in large lexical datasets, but it should soon be possible for the framework to be enhanced e.g. by confidence values for each directionality decision.
Publisher: Language Science Press
ISBN: 3961101434
Category : Language Arts & Disciplines
Languages : en
Pages : 385
Book Description
This volume seeks to infer large phylogenetic networks from phonetically encoded lexical data and contribute in this way to the historical study of language varieties. The technical step that enables progress in this case is the use of causal inference algorithms. Sample sets of words from language varieties are preprocessed into automatically inferred cognate sets, and then modeled as information-theoretic variables based on an intuitive measure of cognate overlap. Causal inference is then applied to these variables in order to determine the existence and direction of influence among the varieties. The directed arcs in the resulting graph structures can be interpreted as reflecting the existence and directionality of lexical flow, a unified model which subsumes inheritance and borrowing as the two main ways of transmission that shape the basic lexicon of languages. A flow-based separation criterion and domain-specific directionality detection criteria are developed to make existing causal inference algorithms more robust against imperfect cognacy data, giving rise to two new algorithms. The Phylogenetic Lexical Flow Inference (PLFI) algorithm requires lexical features of proto-languages to be reconstructed in advance, but yields fully general phylogenetic networks, whereas the more complex Contact Lexical Flow Inference (CLFI) algorithm treats proto-languages as hidden common causes, and only returns hypotheses of historical contact situations between attested languages. The algorithms are evaluated both against a large lexical database of Northern Eurasia spanning many language families, and against simulated data generated by a new model of language contact that builds on the opening and closing of directional contact channels as primary evolutionary events. The algorithms are found to infer the existence of contacts very reliably, whereas the inference of directionality remains difficult. This currently limits the new algorithms to a role as exploratory tools for quickly detecting salient patterns in large lexical datasets, but it should soon be possible for the framework to be enhanced e.g. by confidence values for each directionality decision.
Information Algebras
Author: Juerg Kohlas
Publisher: Springer Science & Business Media
ISBN: 1447100093
Category : Mathematics
Languages : en
Pages : 274
Book Description
Information usually comes in pieces, from different sources. It refers to different, but related questions. Therefore information needs to be aggregated and focused onto the relevant questions. Considering combination and focusing of information as the relevant operations leads to a generic algebraic structure for information. This book introduces and studies information from this algebraic point of view. Algebras of information provide the necessary abstract framework for generic inference procedures. They allow the application of these procedures to a large variety of different formalisms for representing information. At the same time they permit a generic study of conditional independence, a property considered as fundamental for knowledge presentation. Information algebras provide a natural framework to define and study uncertain information. Uncertain information is represented by random variables that naturally form information algebras. This theory also relates to probabilistic assumption-based reasoning in information systems and is the basis for the belief functions in the Dempster-Shafer theory of evidence.
Publisher: Springer Science & Business Media
ISBN: 1447100093
Category : Mathematics
Languages : en
Pages : 274
Book Description
Information usually comes in pieces, from different sources. It refers to different, but related questions. Therefore information needs to be aggregated and focused onto the relevant questions. Considering combination and focusing of information as the relevant operations leads to a generic algebraic structure for information. This book introduces and studies information from this algebraic point of view. Algebras of information provide the necessary abstract framework for generic inference procedures. They allow the application of these procedures to a large variety of different formalisms for representing information. At the same time they permit a generic study of conditional independence, a property considered as fundamental for knowledge presentation. Information algebras provide a natural framework to define and study uncertain information. Uncertain information is represented by random variables that naturally form information algebras. This theory also relates to probabilistic assumption-based reasoning in information systems and is the basis for the belief functions in the Dempster-Shafer theory of evidence.
On Science, Inference, Information and Decision-Making
Author: A. Szaniawski
Publisher: Springer Science & Business Media
ISBN: 9780792349228
Category : Philosophy
Languages : en
Pages : 268
Book Description
There are two competing pictures of science. One considers science as a system of inferences, whereas another looks at science as a system of actions. The essays included in this collection offer a view which intends to combine both pictures. This compromise is well illustrated by Szaniawski's analysis of statistical inferences. It is shown that traditional approaches to the foundations of statistics do not need to be regarded as conflicting with each other. Thus, statistical rules can be treated as rules of behaviour as well as rules of inference. Szaniawski's uniform approach relies on the concept of rationality, analyzed from the point of view of decision theory. Applications of formal tools to the problem of justice and division of goods shows that the concept of rationality has a wider significance. Audience: The book will be of interest to philosophers of science, logicians, ethicists and mathematicians.
Publisher: Springer Science & Business Media
ISBN: 9780792349228
Category : Philosophy
Languages : en
Pages : 268
Book Description
There are two competing pictures of science. One considers science as a system of inferences, whereas another looks at science as a system of actions. The essays included in this collection offer a view which intends to combine both pictures. This compromise is well illustrated by Szaniawski's analysis of statistical inferences. It is shown that traditional approaches to the foundations of statistics do not need to be regarded as conflicting with each other. Thus, statistical rules can be treated as rules of behaviour as well as rules of inference. Szaniawski's uniform approach relies on the concept of rationality, analyzed from the point of view of decision theory. Applications of formal tools to the problem of justice and division of goods shows that the concept of rationality has a wider significance. Audience: The book will be of interest to philosophers of science, logicians, ethicists and mathematicians.