Author: Gabriel-Eduard Vîlcu
Publisher: MDPI
ISBN: 303650298X
Category : Mathematics
Languages : en
Pages : 208
Book Description
This book presents the recent developments in the field of geometric inequalities and their applications. The volume covers a vast range of topics, such as complex geometry, contact geometry, statistical manifolds, Riemannian submanifolds, optimization theory, topology of manifolds, log-concave functions, Obata differential equation, Chen invariants, Einstein spaces, warped products, solitons, isoperimetric problem, Erdös–Mordell inequality, Barrow’s inequality, Simpson inequality, Chen inequalities, and q-integral inequalities. By exposing new concepts, techniques and ideas, this book will certainly stimulate further research in the field.
Inequalities in Geometry and Applications
Author: Gabriel-Eduard Vîlcu
Publisher: MDPI
ISBN: 303650298X
Category : Mathematics
Languages : en
Pages : 208
Book Description
This book presents the recent developments in the field of geometric inequalities and their applications. The volume covers a vast range of topics, such as complex geometry, contact geometry, statistical manifolds, Riemannian submanifolds, optimization theory, topology of manifolds, log-concave functions, Obata differential equation, Chen invariants, Einstein spaces, warped products, solitons, isoperimetric problem, Erdös–Mordell inequality, Barrow’s inequality, Simpson inequality, Chen inequalities, and q-integral inequalities. By exposing new concepts, techniques and ideas, this book will certainly stimulate further research in the field.
Publisher: MDPI
ISBN: 303650298X
Category : Mathematics
Languages : en
Pages : 208
Book Description
This book presents the recent developments in the field of geometric inequalities and their applications. The volume covers a vast range of topics, such as complex geometry, contact geometry, statistical manifolds, Riemannian submanifolds, optimization theory, topology of manifolds, log-concave functions, Obata differential equation, Chen invariants, Einstein spaces, warped products, solitons, isoperimetric problem, Erdös–Mordell inequality, Barrow’s inequality, Simpson inequality, Chen inequalities, and q-integral inequalities. By exposing new concepts, techniques and ideas, this book will certainly stimulate further research in the field.
Recent Advances in Geometric Inequalities
Author: Dragoslav S. Mitrinovic
Publisher: Springer Science & Business Media
ISBN: 9401578427
Category : Mathematics
Languages : en
Pages : 728
Book Description
Publisher: Springer Science & Business Media
ISBN: 9401578427
Category : Mathematics
Languages : en
Pages : 728
Book Description
Inequalities: Theory of Majorization and Its Applications
Author: Albert W. Marshall
Publisher: Springer Science & Business Media
ISBN: 0387682767
Category : Mathematics
Languages : en
Pages : 919
Book Description
This book’s first edition has been widely cited by researchers in diverse fields. The following are excerpts from reviews. “Inequalities: Theory of Majorization and its Applications” merits strong praise. It is innovative, coherent, well written and, most importantly, a pleasure to read. ... This work is a valuable resource!” (Mathematical Reviews). “The authors ... present an extremely rich collection of inequalities in a remarkably coherent and unified approach. The book is a major work on inequalities, rich in content and original in organization.” (Siam Review). “The appearance of ... Inequalities in 1979 had a great impact on the mathematical sciences. By showing how a single concept unified a staggering amount of material from widely diverse disciplines–probability, geometry, statistics, operations research, etc.–this work was a revelation to those of us who had been trying to make sense of his own corner of this material.” (Linear Algebra and its Applications). This greatly expanded new edition includes recent research on stochastic, multivariate and group majorization, Lorenz order, and applications in physics and chemistry, in economics and political science, in matrix inequalities, and in probability and statistics. The reference list has almost doubled.
Publisher: Springer Science & Business Media
ISBN: 0387682767
Category : Mathematics
Languages : en
Pages : 919
Book Description
This book’s first edition has been widely cited by researchers in diverse fields. The following are excerpts from reviews. “Inequalities: Theory of Majorization and its Applications” merits strong praise. It is innovative, coherent, well written and, most importantly, a pleasure to read. ... This work is a valuable resource!” (Mathematical Reviews). “The authors ... present an extremely rich collection of inequalities in a remarkably coherent and unified approach. The book is a major work on inequalities, rich in content and original in organization.” (Siam Review). “The appearance of ... Inequalities in 1979 had a great impact on the mathematical sciences. By showing how a single concept unified a staggering amount of material from widely diverse disciplines–probability, geometry, statistics, operations research, etc.–this work was a revelation to those of us who had been trying to make sense of his own corner of this material.” (Linear Algebra and its Applications). This greatly expanded new edition includes recent research on stochastic, multivariate and group majorization, Lorenz order, and applications in physics and chemistry, in economics and political science, in matrix inequalities, and in probability and statistics. The reference list has almost doubled.
Advances in Mathematical Inequalities and Applications
Author: Praveen Agarwal
Publisher: Springer
ISBN: 9811330131
Category : Mathematics
Languages : en
Pages : 351
Book Description
This book is a collection of original research and survey articles on mathematical inequalities and their numerous applications in diverse areas of mathematics and engineering. It includes chapters on convexity and related concepts; inequalities for mean values, sums, functions, operators, functionals, integrals and their applications in various branches of mathematics and related sciences; fractional integral inequalities; and weighted type integral inequalities. It also presents their wide applications in biomathematics, boundary value problems, mechanics, queuing models, scattering, and geomechanics in a concise, but easily understandable way that makes the further ramifications and future directions clear. The broad scope and high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers. All the contributing authors are leading international academics, scientists, researchers and scholars.
Publisher: Springer
ISBN: 9811330131
Category : Mathematics
Languages : en
Pages : 351
Book Description
This book is a collection of original research and survey articles on mathematical inequalities and their numerous applications in diverse areas of mathematics and engineering. It includes chapters on convexity and related concepts; inequalities for mean values, sums, functions, operators, functionals, integrals and their applications in various branches of mathematics and related sciences; fractional integral inequalities; and weighted type integral inequalities. It also presents their wide applications in biomathematics, boundary value problems, mechanics, queuing models, scattering, and geomechanics in a concise, but easily understandable way that makes the further ramifications and future directions clear. The broad scope and high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers. All the contributing authors are leading international academics, scientists, researchers and scholars.
Geometric Inequalities
Author: Hayk Sedrakyan
Publisher: Springer
ISBN: 3319550802
Category : Mathematics
Languages : en
Pages : 454
Book Description
This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities.
Publisher: Springer
ISBN: 3319550802
Category : Mathematics
Languages : en
Pages : 454
Book Description
This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities.
Functional Equations, Inequalities and Applications
Author: Themistocles M. Rassias
Publisher: Springer Science & Business Media
ISBN: 9781402015786
Category : Mathematics
Languages : en
Pages : 244
Book Description
Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.
Publisher: Springer Science & Business Media
ISBN: 9781402015786
Category : Mathematics
Languages : en
Pages : 244
Book Description
Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.
Mean Curvature Flow and Isoperimetric Inequalities
Author: Manuel Ritoré
Publisher: Springer Science & Business Media
ISBN: 3034602138
Category : Mathematics
Languages : en
Pages : 113
Book Description
Geometric flows have many applications in physics and geometry. The mean curvature flow occurs in the description of the interface evolution in certain physical models. This is related to the property that such a flow is the gradient flow of the area functional and therefore appears naturally in problems where a surface energy is minimized. The mean curvature flow also has many geometric applications, in analogy with the Ricci flow of metrics on abstract riemannian manifolds. One can use this flow as a tool to obtain classification results for surfaces satisfying certain curvature conditions, as well as to construct minimal surfaces. Geometric flows, obtained from solutions of geometric parabolic equations, can be considered as an alternative tool to prove isoperimetric inequalities. On the other hand, isoperimetric inequalities can help in treating several aspects of convergence of these flows. Isoperimetric inequalities have many applications in other fields of geometry, like hyperbolic manifolds.
Publisher: Springer Science & Business Media
ISBN: 3034602138
Category : Mathematics
Languages : en
Pages : 113
Book Description
Geometric flows have many applications in physics and geometry. The mean curvature flow occurs in the description of the interface evolution in certain physical models. This is related to the property that such a flow is the gradient flow of the area functional and therefore appears naturally in problems where a surface energy is minimized. The mean curvature flow also has many geometric applications, in analogy with the Ricci flow of metrics on abstract riemannian manifolds. One can use this flow as a tool to obtain classification results for surfaces satisfying certain curvature conditions, as well as to construct minimal surfaces. Geometric flows, obtained from solutions of geometric parabolic equations, can be considered as an alternative tool to prove isoperimetric inequalities. On the other hand, isoperimetric inequalities can help in treating several aspects of convergence of these flows. Isoperimetric inequalities have many applications in other fields of geometry, like hyperbolic manifolds.
Difference Equations and Inequalities
Author: Ravi P. Agarwal
Publisher: CRC Press
ISBN: 9781420027020
Category : Mathematics
Languages : en
Pages : 1010
Book Description
A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and
Publisher: CRC Press
ISBN: 9781420027020
Category : Mathematics
Languages : en
Pages : 1010
Book Description
A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and
College Algebra
Author: Jay Abramson
Publisher:
ISBN: 9789888407439
Category : Mathematics
Languages : en
Pages : 892
Book Description
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
Publisher:
ISBN: 9789888407439
Category : Mathematics
Languages : en
Pages : 892
Book Description
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
Inequalities
Author: Zdravko Cvetkovski
Publisher: Springer Science & Business Media
ISBN: 3642237924
Category : Mathematics
Languages : en
Pages : 439
Book Description
This work is about inequalities which play an important role in mathematical Olympiads. It contains 175 solved problems in the form of exercises and, in addition, 310 solved problems. The book also covers the theoretical background of the most important theorems and techniques required for solving inequalities. It is written for all middle and high-school students, as well as for graduate and undergraduate students. School teachers and trainers for mathematical competitions will also gain benefit from this book.
Publisher: Springer Science & Business Media
ISBN: 3642237924
Category : Mathematics
Languages : en
Pages : 439
Book Description
This work is about inequalities which play an important role in mathematical Olympiads. It contains 175 solved problems in the form of exercises and, in addition, 310 solved problems. The book also covers the theoretical background of the most important theorems and techniques required for solving inequalities. It is written for all middle and high-school students, as well as for graduate and undergraduate students. School teachers and trainers for mathematical competitions will also gain benefit from this book.