Author: Arun R Srinivasa
Publisher: World Scientific Publishing Company
ISBN: 9813107391
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
With the advent of a host of new materials ranging from shape memory alloys to biomaterials to multiphase alloys, acquiring the capacity to model inelastic behavior and to choose the right model in a commercial analysis software has become a pressing need for practicing engineers. Even with the traditional materials, there is a continued emphasis on optimizing and extending their full range of capability in the applications. This textbook builds upon the existing knowledge of elasticity and thermodynamics, and allows the reader to gain confidence in extending one's skills in understanding and analyzing problems in inelasticity. By reading this textbook and working through the assigned exercises, the reader will gain a level of comfort and competence in developing and using inelasticity models. Thus, the book serves as a valuable book for practicing engineers and senior-level undergraduate/graduate-level students in the mechanical, civil, aeronautical, metallurgical and other disciplines.The book is written in three parts. Part 1 is primarily focused on lumped parameter models and simple structural elements such as trusses and beams. This is suitable for an advanced undergraduate class with just a strength of materials background. Part II is focused on small deformation multi-dimensional inelasticity and is suitable for a beginning graduate class. Sufficient material is included on how to numerically implement an inelastic model and solve either using a simple stress function type of approach or using commercial software. Case studies are included as examples. There is also an extensive discussion of thermodynamics in the context of small deformations. Part III focuses on more advanced situations such as finite deformation inelasticity, thermodynamical ideas and crystal plasticity. More advanced case studies are included in this part.• This textbook takes a new, task- or scenario-based approach to teaching and learning inelasticity. The book is written in an active learning style that appeals to engineers and students who wish to design or analyze structures and components that are subject to inelasticity.• The book incorporates thermodynamical considerations into the modeling right from an early stage. Extensive discussions are provided throughout the book on the thermodynamical underpinnings of the models.• This textbook is the first to make extensive use of MATLAB to implement many inelasticity models. It includes the use of concepts such as Airy stress functions to solve plane problems for inelastic materials. The MATLAB codes are listed in the appendix for one to modify with their own models and requirements.• Step-by-step procedures for formulations and calculations are provided for the reader to readily adapt to the inelastic problems that he or she attempts to solve.• A large number of problems, exercises and projects for one to teach or learn from are included. These can be assigned as homework, in-class exercises or projects.• The book is written in a modular fashion, which provides adequate flexibility for adaptation in classes that cater to different audiences such as senior-level students, graduate students, research scholars, and practicing engineers.
Inelasticity Of Materials: An Engineering Approach And A Practical Guide
Author: Arun R Srinivasa
Publisher: World Scientific Publishing Company
ISBN: 9813107391
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
With the advent of a host of new materials ranging from shape memory alloys to biomaterials to multiphase alloys, acquiring the capacity to model inelastic behavior and to choose the right model in a commercial analysis software has become a pressing need for practicing engineers. Even with the traditional materials, there is a continued emphasis on optimizing and extending their full range of capability in the applications. This textbook builds upon the existing knowledge of elasticity and thermodynamics, and allows the reader to gain confidence in extending one's skills in understanding and analyzing problems in inelasticity. By reading this textbook and working through the assigned exercises, the reader will gain a level of comfort and competence in developing and using inelasticity models. Thus, the book serves as a valuable book for practicing engineers and senior-level undergraduate/graduate-level students in the mechanical, civil, aeronautical, metallurgical and other disciplines.The book is written in three parts. Part 1 is primarily focused on lumped parameter models and simple structural elements such as trusses and beams. This is suitable for an advanced undergraduate class with just a strength of materials background. Part II is focused on small deformation multi-dimensional inelasticity and is suitable for a beginning graduate class. Sufficient material is included on how to numerically implement an inelastic model and solve either using a simple stress function type of approach or using commercial software. Case studies are included as examples. There is also an extensive discussion of thermodynamics in the context of small deformations. Part III focuses on more advanced situations such as finite deformation inelasticity, thermodynamical ideas and crystal plasticity. More advanced case studies are included in this part.• This textbook takes a new, task- or scenario-based approach to teaching and learning inelasticity. The book is written in an active learning style that appeals to engineers and students who wish to design or analyze structures and components that are subject to inelasticity.• The book incorporates thermodynamical considerations into the modeling right from an early stage. Extensive discussions are provided throughout the book on the thermodynamical underpinnings of the models.• This textbook is the first to make extensive use of MATLAB to implement many inelasticity models. It includes the use of concepts such as Airy stress functions to solve plane problems for inelastic materials. The MATLAB codes are listed in the appendix for one to modify with their own models and requirements.• Step-by-step procedures for formulations and calculations are provided for the reader to readily adapt to the inelastic problems that he or she attempts to solve.• A large number of problems, exercises and projects for one to teach or learn from are included. These can be assigned as homework, in-class exercises or projects.• The book is written in a modular fashion, which provides adequate flexibility for adaptation in classes that cater to different audiences such as senior-level students, graduate students, research scholars, and practicing engineers.
Publisher: World Scientific Publishing Company
ISBN: 9813107391
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
With the advent of a host of new materials ranging from shape memory alloys to biomaterials to multiphase alloys, acquiring the capacity to model inelastic behavior and to choose the right model in a commercial analysis software has become a pressing need for practicing engineers. Even with the traditional materials, there is a continued emphasis on optimizing and extending their full range of capability in the applications. This textbook builds upon the existing knowledge of elasticity and thermodynamics, and allows the reader to gain confidence in extending one's skills in understanding and analyzing problems in inelasticity. By reading this textbook and working through the assigned exercises, the reader will gain a level of comfort and competence in developing and using inelasticity models. Thus, the book serves as a valuable book for practicing engineers and senior-level undergraduate/graduate-level students in the mechanical, civil, aeronautical, metallurgical and other disciplines.The book is written in three parts. Part 1 is primarily focused on lumped parameter models and simple structural elements such as trusses and beams. This is suitable for an advanced undergraduate class with just a strength of materials background. Part II is focused on small deformation multi-dimensional inelasticity and is suitable for a beginning graduate class. Sufficient material is included on how to numerically implement an inelastic model and solve either using a simple stress function type of approach or using commercial software. Case studies are included as examples. There is also an extensive discussion of thermodynamics in the context of small deformations. Part III focuses on more advanced situations such as finite deformation inelasticity, thermodynamical ideas and crystal plasticity. More advanced case studies are included in this part.• This textbook takes a new, task- or scenario-based approach to teaching and learning inelasticity. The book is written in an active learning style that appeals to engineers and students who wish to design or analyze structures and components that are subject to inelasticity.• The book incorporates thermodynamical considerations into the modeling right from an early stage. Extensive discussions are provided throughout the book on the thermodynamical underpinnings of the models.• This textbook is the first to make extensive use of MATLAB to implement many inelasticity models. It includes the use of concepts such as Airy stress functions to solve plane problems for inelastic materials. The MATLAB codes are listed in the appendix for one to modify with their own models and requirements.• Step-by-step procedures for formulations and calculations are provided for the reader to readily adapt to the inelastic problems that he or she attempts to solve.• A large number of problems, exercises and projects for one to teach or learn from are included. These can be assigned as homework, in-class exercises or projects.• The book is written in a modular fashion, which provides adequate flexibility for adaptation in classes that cater to different audiences such as senior-level students, graduate students, research scholars, and practicing engineers.
Inelasticity of Materials
Author: Arun Ramaswamy Srinivasa
Publisher: World Scientific Publishing Company
ISBN:
Category : Science
Languages : en
Pages : 580
Book Description
With the advent of a host of new materials ranging from shape memory alloys to biomaterials to multiphase alloys, acquiring the capacity to model inelastic behavior and to choose the right model in a commercial analysis software has become a pressing need for practicing engineers. Even with the traditional materials, there is a continued emphasis on optimizing and extending their full range of capability in the applications. This textbook builds upon the existing knowledge of elasticity and thermodynamics, and allows the reader to gain confidence in extending one's skills in understanding and analyzing problems in inelasticity. By reading this textbook and working through the assigned exercises, the reader will gain a level of comfort and competence in developing and using inelasticity models. Thus, the book serves as a valuable book for practicing engineers and senior-level undergraduate/graduate-level students in the mechanical, civil, aeronautical, metallurgical and other disciplines. The book is written in three parts. Part 1 is primarily focused on lumped parameter models and simple structural elements such as trusses and beams. This is suitable for an advanced undergraduate class with just a strength of materials background. Part II is focused on small deformation multi-dimensional inelasticity and is suitable for a beginning graduate class. Sufficient material is included on how to numerically implement an inelastic model and solve either using a simple stress function type of approach or using commercial software. Case studies are included as examples. There is also an extensive discussion of thermodynamics in the context of small deformations. Part III focuses on more advanced situations such as finite deformation inelasticity, thermodynamical ideas and crystal plasticity. More advanced case studies are included in this part. bull; This textbook takes a new, task- or scenario-based approach to teaching and learning inelasticity. The book is written in an active learning style that appeals to engineers and students who wish to design or analyze structures and components that are subject to inelasticity. bull; The book incorporates thermodynamical considerations into the modeling right from an early stage. Extensive discussions are provided throughout the book on the thermodynamical underpinnings of the models. bull; This textbook is the first to make extensive use of MATLAB to implement many inelasticity models. It includes the use of concepts such as Airy stress functions to solve plane problems for inelastic materials. The MATLAB codes are listed in the appendix for one to modify with their own models and requirements. bull; Step-by-step procedures for formulations and calculations are provided for the reader to readily adapt to the inelastic problems that he or she attempts to solve. bull; A large number of problems, exercises and projects for one to teach or learn from are included. These can be assigned as homework, in-class exercises or projects. bull; The book is written in a modular fashion, which provides adequate flexibility for adaptation in classes that cater to different audiences such as senior-level students, graduate students, research scholars, and practicing engineers.
Publisher: World Scientific Publishing Company
ISBN:
Category : Science
Languages : en
Pages : 580
Book Description
With the advent of a host of new materials ranging from shape memory alloys to biomaterials to multiphase alloys, acquiring the capacity to model inelastic behavior and to choose the right model in a commercial analysis software has become a pressing need for practicing engineers. Even with the traditional materials, there is a continued emphasis on optimizing and extending their full range of capability in the applications. This textbook builds upon the existing knowledge of elasticity and thermodynamics, and allows the reader to gain confidence in extending one's skills in understanding and analyzing problems in inelasticity. By reading this textbook and working through the assigned exercises, the reader will gain a level of comfort and competence in developing and using inelasticity models. Thus, the book serves as a valuable book for practicing engineers and senior-level undergraduate/graduate-level students in the mechanical, civil, aeronautical, metallurgical and other disciplines. The book is written in three parts. Part 1 is primarily focused on lumped parameter models and simple structural elements such as trusses and beams. This is suitable for an advanced undergraduate class with just a strength of materials background. Part II is focused on small deformation multi-dimensional inelasticity and is suitable for a beginning graduate class. Sufficient material is included on how to numerically implement an inelastic model and solve either using a simple stress function type of approach or using commercial software. Case studies are included as examples. There is also an extensive discussion of thermodynamics in the context of small deformations. Part III focuses on more advanced situations such as finite deformation inelasticity, thermodynamical ideas and crystal plasticity. More advanced case studies are included in this part. bull; This textbook takes a new, task- or scenario-based approach to teaching and learning inelasticity. The book is written in an active learning style that appeals to engineers and students who wish to design or analyze structures and components that are subject to inelasticity. bull; The book incorporates thermodynamical considerations into the modeling right from an early stage. Extensive discussions are provided throughout the book on the thermodynamical underpinnings of the models. bull; This textbook is the first to make extensive use of MATLAB to implement many inelasticity models. It includes the use of concepts such as Airy stress functions to solve plane problems for inelastic materials. The MATLAB codes are listed in the appendix for one to modify with their own models and requirements. bull; Step-by-step procedures for formulations and calculations are provided for the reader to readily adapt to the inelastic problems that he or she attempts to solve. bull; A large number of problems, exercises and projects for one to teach or learn from are included. These can be assigned as homework, in-class exercises or projects. bull; The book is written in a modular fashion, which provides adequate flexibility for adaptation in classes that cater to different audiences such as senior-level students, graduate students, research scholars, and practicing engineers.
Plasticity
Author: S. Nemat-Nasser
Publisher: Cambridge University Press
ISBN: 9780521839792
Category : Mathematics
Languages : en
Pages : 858
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521839792
Category : Mathematics
Languages : en
Pages : 858
Book Description
Publisher Description
Inelastic Analysis of Structures
Author: Milan Jirasek
Publisher: John Wiley & Sons
ISBN: 9780471987161
Category : Technology & Engineering
Languages : en
Pages : 770
Book Description
Hat ein Werkstoff seine Elastizitatsgrenze erreicht, so verhalt er sich inelastisch. Ingenieure und Designer mussen wissen, mit welchen Eigenschaften dann zu rechnen ist. Dieser Band vermittelt Ihnen den aktuellen Wissensstand auf dem Gebiet des plastischen Verhaltens und der plastischen Zug-Spannungs-Beziehungen. Behandelt werden in erster Linie Baustoffe, vor allem Stahl, aber auch Beton und Boden. Eine ausgewogene Mischung aus qualitativer Diskussion und mathematischer Theorie! (05/00)
Publisher: John Wiley & Sons
ISBN: 9780471987161
Category : Technology & Engineering
Languages : en
Pages : 770
Book Description
Hat ein Werkstoff seine Elastizitatsgrenze erreicht, so verhalt er sich inelastisch. Ingenieure und Designer mussen wissen, mit welchen Eigenschaften dann zu rechnen ist. Dieser Band vermittelt Ihnen den aktuellen Wissensstand auf dem Gebiet des plastischen Verhaltens und der plastischen Zug-Spannungs-Beziehungen. Behandelt werden in erster Linie Baustoffe, vor allem Stahl, aber auch Beton und Boden. Eine ausgewogene Mischung aus qualitativer Diskussion und mathematischer Theorie! (05/00)
Inelastic Analysis of Solids and Structures
Author: M. Kojic
Publisher: Springer Science & Business Media
ISBN: 3540265074
Category : Science
Languages : en
Pages : 419
Book Description
Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions. The book describes experimental observations and principles of mechanics, and efficient computational algorithms for stress calculations as typically performed in finite element analysis. The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials. The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations. Many solved examples are presented, which are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.
Publisher: Springer Science & Business Media
ISBN: 3540265074
Category : Science
Languages : en
Pages : 419
Book Description
Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions. The book describes experimental observations and principles of mechanics, and efficient computational algorithms for stress calculations as typically performed in finite element analysis. The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials. The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations. Many solved examples are presented, which are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.
Elastic And Inelastic Stress Analysis
Author: Irving H Shames
Publisher: CRC Press
ISBN: 1560326867
Category : Science
Languages : en
Pages : 740
Book Description
Presents certain key aspects of inelastic solid mechanics centered around viscoelasticity, creep, viscoplasticity, and plasticity. It is divided into three parts consisting of the fundamentals of elasticity, useful constitutive laws, and applications to simple structural members, providing extended treatment of basic problems in static structural mechanics, including elastic and inelastic effects. It contains worked-out examples and end-of-chapter problems.
Publisher: CRC Press
ISBN: 1560326867
Category : Science
Languages : en
Pages : 740
Book Description
Presents certain key aspects of inelastic solid mechanics centered around viscoelasticity, creep, viscoplasticity, and plasticity. It is divided into three parts consisting of the fundamentals of elasticity, useful constitutive laws, and applications to simple structural members, providing extended treatment of basic problems in static structural mechanics, including elastic and inelastic effects. It contains worked-out examples and end-of-chapter problems.
Computational Inelasticity
Author: J.C. Simo
Publisher: Springer Science & Business Media
ISBN: 0387227636
Category : Computers
Languages : en
Pages : 405
Book Description
A description of the theoretical foundations of inelasticity, its numerical formulation and implementation, constituting a representative sample of state-of-the-art methodology currently used in inelastic calculations. Among the numerous topics covered are small deformation plasticity and viscoplasticity, convex optimisation theory, integration algorithms for the constitutive equation of plasticity and viscoplasticity, the variational setting of boundary value problems and discretization by finite element methods. Also addressed are the generalisation of the theory to non-smooth yield surface, mathematical numerical analysis issues of general return mapping algorithms, the generalisation to finite-strain inelasticity theory, objective integration algorithms for rate constitutive equations, the theory of hyperelastic-based plasticity models and small and large deformation viscoelasticity. Of great interest to researchers and graduate students in various branches of engineering, especially civil, aeronautical and mechanical, and applied mathematics.
Publisher: Springer Science & Business Media
ISBN: 0387227636
Category : Computers
Languages : en
Pages : 405
Book Description
A description of the theoretical foundations of inelasticity, its numerical formulation and implementation, constituting a representative sample of state-of-the-art methodology currently used in inelastic calculations. Among the numerous topics covered are small deformation plasticity and viscoplasticity, convex optimisation theory, integration algorithms for the constitutive equation of plasticity and viscoplasticity, the variational setting of boundary value problems and discretization by finite element methods. Also addressed are the generalisation of the theory to non-smooth yield surface, mathematical numerical analysis issues of general return mapping algorithms, the generalisation to finite-strain inelasticity theory, objective integration algorithms for rate constitutive equations, the theory of hyperelastic-based plasticity models and small and large deformation viscoelasticity. Of great interest to researchers and graduate students in various branches of engineering, especially civil, aeronautical and mechanical, and applied mathematics.
Inelastic Deformation of Metals
Author: Donald C. Stouffer
Publisher: John Wiley & Sons
ISBN: 9780471021438
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Using a totally new approach, this groundbreaking book establishesthe logical connections between metallurgy, materials modeling, andnumerical applications. In recognition of the fact that classicalmethods are inadequate when time effects are present, or whencertain types of multiaxial loads are applied, the new, physicallybased state variable method has evolved to meet these needs.Inelastic Deformation of Metals is the first comprehensivepresentation of this new technology in book form. It developsphysically based, numerically efficient, and accurate methods forpredicting the inelastic response of metals under a variety ofloading and environmental conditions. More specifically, Inelastic Deformation of Metals: * Demonstrates how to use the metallurgical information to developmaterial models for structural simulations and low cyclic fatiguepredictions. It presents the key features of classical and statevariable modeling, describes the different types of models andtheir attributes, and provides methods for developing models forspecial situations. This book's innovative approach covers such newtopics as multiaxial loading, thermomechanical loading, and singlecrystal superalloys. * Provides comparisons between data and theory to help the readermake meaningful judgments about the value and accuracy of aparticular model and to instill an understanding of how metalsrespond in real service environments. * Analyzes the numerical methods associated with nonlinearconstitutive modeling, including time independent, time dependentnumerical procedures, time integration schemes, inversiontechniques, and sub-incrementing. Inelastic Deformation of Metals is designed to give theprofessional engineer and advanced student new and expandedknowledge of metals and modeling that will lead to more accuratejudgments and more efficient designs. In contrast to existing plasticity books, which discuss few if anycorrelations between data and models, this breakthrough volumeshows engineers and advanced students how materials and modelsactually do behave in real service environments. As greater demandsare placed on technology, the need for more meaningful judgmentsand more efficient designs increases dramatically. Incorporatingthe state variable approach, Inelastic Deformation of Metals: * Provides an overview of a wide variety of metal responsecharacteristics for rate dependent and rate independent loadingconditions * Shows the correlations between the mechanical response propertiesand the deformation mechanisms, and describes how to use thisinformation in constitutive modeling * Presents different modeling options and discusses the usefulnessand limitations of each modeling approach, with material parametersfor each model * Offers numerous examples of material response and correlationwith model predictions for many alloys * Shows how to implement nonlinear material models in stand-aloneconstitutive model codes and finite element codes An innovative, comprehensive, and essential book, InelasticDeformation of Metals will help practicing engineers and advancedstudents in mechanical, aerospace, civil, and metallurgicalengineering increase their professional skills in the moderntechnological environment.
Publisher: John Wiley & Sons
ISBN: 9780471021438
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Using a totally new approach, this groundbreaking book establishesthe logical connections between metallurgy, materials modeling, andnumerical applications. In recognition of the fact that classicalmethods are inadequate when time effects are present, or whencertain types of multiaxial loads are applied, the new, physicallybased state variable method has evolved to meet these needs.Inelastic Deformation of Metals is the first comprehensivepresentation of this new technology in book form. It developsphysically based, numerically efficient, and accurate methods forpredicting the inelastic response of metals under a variety ofloading and environmental conditions. More specifically, Inelastic Deformation of Metals: * Demonstrates how to use the metallurgical information to developmaterial models for structural simulations and low cyclic fatiguepredictions. It presents the key features of classical and statevariable modeling, describes the different types of models andtheir attributes, and provides methods for developing models forspecial situations. This book's innovative approach covers such newtopics as multiaxial loading, thermomechanical loading, and singlecrystal superalloys. * Provides comparisons between data and theory to help the readermake meaningful judgments about the value and accuracy of aparticular model and to instill an understanding of how metalsrespond in real service environments. * Analyzes the numerical methods associated with nonlinearconstitutive modeling, including time independent, time dependentnumerical procedures, time integration schemes, inversiontechniques, and sub-incrementing. Inelastic Deformation of Metals is designed to give theprofessional engineer and advanced student new and expandedknowledge of metals and modeling that will lead to more accuratejudgments and more efficient designs. In contrast to existing plasticity books, which discuss few if anycorrelations between data and models, this breakthrough volumeshows engineers and advanced students how materials and modelsactually do behave in real service environments. As greater demandsare placed on technology, the need for more meaningful judgmentsand more efficient designs increases dramatically. Incorporatingthe state variable approach, Inelastic Deformation of Metals: * Provides an overview of a wide variety of metal responsecharacteristics for rate dependent and rate independent loadingconditions * Shows the correlations between the mechanical response propertiesand the deformation mechanisms, and describes how to use thisinformation in constitutive modeling * Presents different modeling options and discusses the usefulnessand limitations of each modeling approach, with material parametersfor each model * Offers numerous examples of material response and correlationwith model predictions for many alloys * Shows how to implement nonlinear material models in stand-aloneconstitutive model codes and finite element codes An innovative, comprehensive, and essential book, InelasticDeformation of Metals will help practicing engineers and advancedstudents in mechanical, aerospace, civil, and metallurgicalengineering increase their professional skills in the moderntechnological environment.
Mathematical Modeling of Inelastic Deformation
Author: J.F. Besseling
Publisher: CRC Press
ISBN: 9780412452802
Category : Mathematics
Languages : en
Pages : 344
Book Description
Mathematical Modeling of Inelastic Deformation details the mathematical modeling of the inelastic behavior of engineering materials. The authors use a thermodynamic approach to the subject and focus on crystalline materials, but not to the exclusion of macro-moleular solids. Within a unified theory for small and large deformations, they develop simple models, such as the elastic-perfectly plastic model, as well as complex models dealing with anisotropic hardening. The book includes finite element implementation of the theory and illustrates the implementation with examples from heat production and conduction processes.
Publisher: CRC Press
ISBN: 9780412452802
Category : Mathematics
Languages : en
Pages : 344
Book Description
Mathematical Modeling of Inelastic Deformation details the mathematical modeling of the inelastic behavior of engineering materials. The authors use a thermodynamic approach to the subject and focus on crystalline materials, but not to the exclusion of macro-moleular solids. Within a unified theory for small and large deformations, they develop simple models, such as the elastic-perfectly plastic model, as well as complex models dealing with anisotropic hardening. The book includes finite element implementation of the theory and illustrates the implementation with examples from heat production and conduction processes.
Elasticity and Plasticity of Large Deformations
Author: Albrecht Bertram
Publisher: Springer Nature
ISBN: 3030723283
Category : Science
Languages : en
Pages : 410
Book Description
This book presents an introduction to material theory and, in particular, to elasticity, plasticity and viscoelasticity, to bring the reader close to the frontiers of today’s knowledge in these particular fields. It starts right from the beginning without assuming much knowledge of the subject. Hence, the book is generally comprehensible to all engineers, physicists, mathematicians, and others. At the beginning of each new section, a brief Comment on the Literature contains recommendations for further reading. This book includes an updated reference list and over 100 changes throughout the book. It contains the latest knowledge on the subject. Two new chapters have been added in this new edition. Now finite viscoelasticity is included, and an Essay on gradient materials, which have recently drawn much attention.
Publisher: Springer Nature
ISBN: 3030723283
Category : Science
Languages : en
Pages : 410
Book Description
This book presents an introduction to material theory and, in particular, to elasticity, plasticity and viscoelasticity, to bring the reader close to the frontiers of today’s knowledge in these particular fields. It starts right from the beginning without assuming much knowledge of the subject. Hence, the book is generally comprehensible to all engineers, physicists, mathematicians, and others. At the beginning of each new section, a brief Comment on the Literature contains recommendations for further reading. This book includes an updated reference list and over 100 changes throughout the book. It contains the latest knowledge on the subject. Two new chapters have been added in this new edition. Now finite viscoelasticity is included, and an Essay on gradient materials, which have recently drawn much attention.