Author: Shiyu Zhou
Publisher: John Wiley & Sons
ISBN: 1119666309
Category : Mathematics
Languages : en
Pages : 356
Book Description
Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model In Industrial Data Analytics for Diagnosis and Prognosis - A Random Effects Modelling Approach, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book’s two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems. In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers: A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, Industrial Data Analytics for Diagnosis and Prognosis is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.
Industrial Data Analytics for Diagnosis and Prognosis
Author: Shiyu Zhou
Publisher: John Wiley & Sons
ISBN: 1119666309
Category : Mathematics
Languages : en
Pages : 356
Book Description
Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model In Industrial Data Analytics for Diagnosis and Prognosis - A Random Effects Modelling Approach, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book’s two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems. In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers: A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, Industrial Data Analytics for Diagnosis and Prognosis is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.
Publisher: John Wiley & Sons
ISBN: 1119666309
Category : Mathematics
Languages : en
Pages : 356
Book Description
Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model In Industrial Data Analytics for Diagnosis and Prognosis - A Random Effects Modelling Approach, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book’s two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems. In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers: A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, Industrial Data Analytics for Diagnosis and Prognosis is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.
Author:
Publisher: John Wiley & Sons
ISBN:
Category :
Languages : en
Pages : 324
Book Description
Publisher: John Wiley & Sons
ISBN:
Category :
Languages : en
Pages : 324
Book Description
Big Data Analytics and Intelligence
Author: Poonam Tanwar
Publisher: Emerald Group Publishing
ISBN: 1839090995
Category : Business & Economics
Languages : en
Pages : 308
Book Description
Big Data Analytics and Intelligence is essential reading for researchers and experts working in the fields of health care, data science, analytics, the internet of things, and information retrieval.
Publisher: Emerald Group Publishing
ISBN: 1839090995
Category : Business & Economics
Languages : en
Pages : 308
Book Description
Big Data Analytics and Intelligence is essential reading for researchers and experts working in the fields of health care, data science, analytics, the internet of things, and information retrieval.
SPS2022
Author: A.H.C. Ng
Publisher: IOS Press
ISBN: 1643682695
Category : Technology & Engineering
Languages : en
Pages : 874
Book Description
The realization of a successful product requires collaboration between developers and producers, taking account of stakeholder value, reinforcing the contribution of industry to society and enhancing the wellbeing of workers while respecting planetary boundaries. Founded in 2006, the Swedish Production Academy (SPA) aims to drive and develop production research and education and to increase cooperation within the production area. This book presents the proceedings of the 10th Swedish Production Symposium (SPS2022), held in Skövde, Sweden, from 26-29 April 2022. The overall theme of the symposium was ‘Industry 5.0 Transformation – Towards a Sustainable, Human-Centric, and Resilient Production’. Since its inception in 2007, the purpose of SPS has been to facilitate an event at which members and interested participants from industry and academia can meet to exchange ideas. The 69 papers accepted for presentation here are grouped into ten sections: resource-efficient production; flexible production; humans in the production system; circular production systems and maintenance; integrated product and production development; industrial optimization and decision-making; cyber-physical production systems and digital twins; innovative production processes and additive manufacturing; smart and resilient supply chains; and linking research and education. Also included are three sections covering the Special Sessions at SPS2022: artificial intelligence and industrial analytics in industry 4.0; development of resilient and sustainable production systems; and boundary crossing and boundary objects in product and production development. The book will be of interest to all those involved in the development and production of future products.
Publisher: IOS Press
ISBN: 1643682695
Category : Technology & Engineering
Languages : en
Pages : 874
Book Description
The realization of a successful product requires collaboration between developers and producers, taking account of stakeholder value, reinforcing the contribution of industry to society and enhancing the wellbeing of workers while respecting planetary boundaries. Founded in 2006, the Swedish Production Academy (SPA) aims to drive and develop production research and education and to increase cooperation within the production area. This book presents the proceedings of the 10th Swedish Production Symposium (SPS2022), held in Skövde, Sweden, from 26-29 April 2022. The overall theme of the symposium was ‘Industry 5.0 Transformation – Towards a Sustainable, Human-Centric, and Resilient Production’. Since its inception in 2007, the purpose of SPS has been to facilitate an event at which members and interested participants from industry and academia can meet to exchange ideas. The 69 papers accepted for presentation here are grouped into ten sections: resource-efficient production; flexible production; humans in the production system; circular production systems and maintenance; integrated product and production development; industrial optimization and decision-making; cyber-physical production systems and digital twins; innovative production processes and additive manufacturing; smart and resilient supply chains; and linking research and education. Also included are three sections covering the Special Sessions at SPS2022: artificial intelligence and industrial analytics in industry 4.0; development of resilient and sustainable production systems; and boundary crossing and boundary objects in product and production development. The book will be of interest to all those involved in the development and production of future products.
Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing
Author: Amit Kumar Tyagi
Publisher: CRC Press
ISBN: 1040151396
Category : Computers
Languages : en
Pages : 419
Book Description
Today, in this smart era, data analytics and artificial intelligence (AI) play an important role in predictive maintenance (PdM) within the manufacturing industry. This innovative approach aims to optimize maintenance strategies by predicting when equipment or machinery is likely to fail so that maintenance can be performed just in time to prevent costly breakdowns. This book contains up-to-date information on predictive maintenance and the latest advancements, trends, and tools required to reduce costs and save time for manufacturers and industries. Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing provides an extensive and in-depth exploration of the intersection of data analytics, artificial intelligence, and predictive maintenance in the manufacturing industry and covers fundamental concepts, advanced techniques, case studies, and practical applications. Using a multidisciplinary approach, this book recognizes that predictive maintenance in manufacturing requires collaboration among engineers, data scientists, and business professionals and includes case studies from various manufacturing sectors showcasing successful applications of predictive maintenance. The real-world examples explain the useful benefits and ROI achieved by organizations. The emphasis is on scalability, making it suitable for both small and large manufacturing operations, and readers will learn how to adapt predictive maintenance strategies to different scales and industries. This book presents resources and references to keep readers updated on the latest advancements, tools, and trends, ensuring continuous learning. Serving as a reference guide, this book focuses on the latest advancements, trends, and tools relevant to predictive maintenance and can also serve as an educational resource for students studying manufacturing, data science, or related fields.
Publisher: CRC Press
ISBN: 1040151396
Category : Computers
Languages : en
Pages : 419
Book Description
Today, in this smart era, data analytics and artificial intelligence (AI) play an important role in predictive maintenance (PdM) within the manufacturing industry. This innovative approach aims to optimize maintenance strategies by predicting when equipment or machinery is likely to fail so that maintenance can be performed just in time to prevent costly breakdowns. This book contains up-to-date information on predictive maintenance and the latest advancements, trends, and tools required to reduce costs and save time for manufacturers and industries. Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing provides an extensive and in-depth exploration of the intersection of data analytics, artificial intelligence, and predictive maintenance in the manufacturing industry and covers fundamental concepts, advanced techniques, case studies, and practical applications. Using a multidisciplinary approach, this book recognizes that predictive maintenance in manufacturing requires collaboration among engineers, data scientists, and business professionals and includes case studies from various manufacturing sectors showcasing successful applications of predictive maintenance. The real-world examples explain the useful benefits and ROI achieved by organizations. The emphasis is on scalability, making it suitable for both small and large manufacturing operations, and readers will learn how to adapt predictive maintenance strategies to different scales and industries. This book presents resources and references to keep readers updated on the latest advancements, tools, and trends, ensuring continuous learning. Serving as a reference guide, this book focuses on the latest advancements, trends, and tools relevant to predictive maintenance and can also serve as an educational resource for students studying manufacturing, data science, or related fields.
Big Data Analytics in Healthcare
Author: Anand J. Kulkarni
Publisher: Springer Nature
ISBN: 3030316726
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
This book includes state-of-the-art discussions on various issues and aspects of the implementation, testing, validation, and application of big data in the context of healthcare. The concept of big data is revolutionary, both from a technological and societal well-being standpoint. This book provides a comprehensive reference guide for engineers, scientists, and students studying/involved in the development of big data tools in the areas of healthcare and medicine. It also features a multifaceted and state-of-the-art literature review on healthcare data, its modalities, complexities, and methodologies, along with mathematical formulations. The book is divided into two main sections, the first of which discusses the challenges and opportunities associated with the implementation of big data in the healthcare sector. In turn, the second addresses the mathematical modeling of healthcare problems, as well as current and potential future big data applications and platforms.
Publisher: Springer Nature
ISBN: 3030316726
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
This book includes state-of-the-art discussions on various issues and aspects of the implementation, testing, validation, and application of big data in the context of healthcare. The concept of big data is revolutionary, both from a technological and societal well-being standpoint. This book provides a comprehensive reference guide for engineers, scientists, and students studying/involved in the development of big data tools in the areas of healthcare and medicine. It also features a multifaceted and state-of-the-art literature review on healthcare data, its modalities, complexities, and methodologies, along with mathematical formulations. The book is divided into two main sections, the first of which discusses the challenges and opportunities associated with the implementation of big data in the healthcare sector. In turn, the second addresses the mathematical modeling of healthcare problems, as well as current and potential future big data applications and platforms.
Proceedings of the International Conference on Applications of Machine Intelligence and Data Analytics (ICAMIDA 2022)
Author: Sharvari Tamane
Publisher: Springer Nature
ISBN: 9464631368
Category : Computers
Languages : en
Pages : 1027
Book Description
This is an open access book. As on date, huge volumes of data are being generated through sensors, satellites, and simulators. Modern research on data analytics and its applications reveal that several algorithms are being designed and developed to process these datasets, either through the use of sequential and parallel processes. In the current scenario of Industry 4.0, data analytics, artificial intelligence and machine learning are being used to support decisions in space and time. Further, the availability of Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs) have enabled to processing of these datasets. Some of the applications of Artificial Intelligence, Machine Learning and Data Analytics are in the domains of Agriculture, Climate Change, Disaster Prediction, Automation in Manufacturing, Intelligent Transportation Systems, Health Care, Retail, Stock Market, Fashion Design, etc. The international conference on Applications of Machine Intelligence and Data Analytics aims to bring together faculty members, researchers, scientists, and industry people on a common platform to exchange ideas, algorithms, knowledge based on processing hardware and their respective application programming interfaces (APIs).
Publisher: Springer Nature
ISBN: 9464631368
Category : Computers
Languages : en
Pages : 1027
Book Description
This is an open access book. As on date, huge volumes of data are being generated through sensors, satellites, and simulators. Modern research on data analytics and its applications reveal that several algorithms are being designed and developed to process these datasets, either through the use of sequential and parallel processes. In the current scenario of Industry 4.0, data analytics, artificial intelligence and machine learning are being used to support decisions in space and time. Further, the availability of Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs) have enabled to processing of these datasets. Some of the applications of Artificial Intelligence, Machine Learning and Data Analytics are in the domains of Agriculture, Climate Change, Disaster Prediction, Automation in Manufacturing, Intelligent Transportation Systems, Health Care, Retail, Stock Market, Fashion Design, etc. The international conference on Applications of Machine Intelligence and Data Analytics aims to bring together faculty members, researchers, scientists, and industry people on a common platform to exchange ideas, algorithms, knowledge based on processing hardware and their respective application programming interfaces (APIs).
Handbook of Data Science Approaches for Biomedical Engineering
Author: Valentina Emilia Balas
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
32nd European Symposium on Computer Aided Process Engineering
Author: Ludovic Montastruc
Publisher: Elsevier
ISBN: 032395880X
Category : Technology & Engineering
Languages : en
Pages : 1760
Book Description
32nd European Symposium on Computer Aided Process Engineering: ESCAPE-32 contains the papers presented at the 32nd European Symposium of Computer Aided Process Engineering (ESCAPE) event held in Toulouse, France. It is a valuable resource for chemical engineers, chemical process engineers, researchers in industry and academia, students and consultants for chemical industries who work in process development and design. - Presents findings and discussions from the 32nd European Symposium of Computer Aided Process Engineering (ESCAPE) event
Publisher: Elsevier
ISBN: 032395880X
Category : Technology & Engineering
Languages : en
Pages : 1760
Book Description
32nd European Symposium on Computer Aided Process Engineering: ESCAPE-32 contains the papers presented at the 32nd European Symposium of Computer Aided Process Engineering (ESCAPE) event held in Toulouse, France. It is a valuable resource for chemical engineers, chemical process engineers, researchers in industry and academia, students and consultants for chemical industries who work in process development and design. - Presents findings and discussions from the 32nd European Symposium of Computer Aided Process Engineering (ESCAPE) event
IoT-Based Data Analytics for the Healthcare Industry
Author: Sanjay Kumar Singh
Publisher: Academic Press
ISBN: 0128214767
Category : Technology & Engineering
Languages : en
Pages : 342
Book Description
IoT Based Data Analytics for the Healthcare Industry: Techniques and Applications explores recent advances in the analysis of healthcare industry data through IoT data analytics. The book covers the analysis of ubiquitous data generated by the healthcare industry, from a wide range of sources, including patients, doctors, hospitals, and health insurance companies. The book provides AI solutions and support for healthcare industry end-users who need to analyze and manipulate this vast amount of data. These solutions feature deep learning and a wide range of intelligent methods, including simulated annealing, tabu search, genetic algorithm, ant colony optimization, and particle swarm optimization. The book also explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages, challenges and issues in data collection, data handling, and data collection set-up. Healthcare industry data or streaming data generated by ubiquitous sensors cocooned into the IoT requires advanced analytics to transform data into information. With advances in computing power, communications, and techniques for data acquisition, the need for advanced data analytics is in high demand. - Provides state-of-art methods and current trends in data analytics for the healthcare industry - Addresses the top concerns in the healthcare industry using IoT and data analytics, and machine learning and deep learning techniques - Discusses several potential AI techniques developed using IoT for the healthcare industry - Explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages
Publisher: Academic Press
ISBN: 0128214767
Category : Technology & Engineering
Languages : en
Pages : 342
Book Description
IoT Based Data Analytics for the Healthcare Industry: Techniques and Applications explores recent advances in the analysis of healthcare industry data through IoT data analytics. The book covers the analysis of ubiquitous data generated by the healthcare industry, from a wide range of sources, including patients, doctors, hospitals, and health insurance companies. The book provides AI solutions and support for healthcare industry end-users who need to analyze and manipulate this vast amount of data. These solutions feature deep learning and a wide range of intelligent methods, including simulated annealing, tabu search, genetic algorithm, ant colony optimization, and particle swarm optimization. The book also explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages, challenges and issues in data collection, data handling, and data collection set-up. Healthcare industry data or streaming data generated by ubiquitous sensors cocooned into the IoT requires advanced analytics to transform data into information. With advances in computing power, communications, and techniques for data acquisition, the need for advanced data analytics is in high demand. - Provides state-of-art methods and current trends in data analytics for the healthcare industry - Addresses the top concerns in the healthcare industry using IoT and data analytics, and machine learning and deep learning techniques - Discusses several potential AI techniques developed using IoT for the healthcare industry - Explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages