In-body Power Transfer and Data Communication for Active Neural Implants

In-body Power Transfer and Data Communication for Active Neural Implants PDF Author: Dorian Haci
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

In-body Power Transfer and Data Communication for Active Neural Implants

In-body Power Transfer and Data Communication for Active Neural Implants PDF Author: Dorian Haci
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Wireless Power Transfer and Data Communication for Neural Implants

Wireless Power Transfer and Data Communication for Neural Implants PDF Author: Gürkan Yilmaz
Publisher: Springer
ISBN: 331949337X
Category : Technology & Engineering
Languages : en
Pages : 119

Get Book Here

Book Description
This book presents new circuits and systems for implantable biomedical applications targeting neural recording. The authors describe a system design adapted to conform to the requirements of an epilepsy monitoring system. Throughout the book, these requirements are reflected in terms of implant size, power consumption, and data rate. In addition to theoretical background which explains the relevant technical challenges, the authors provide practical, step-by-step solutions to these problems. Readers will gain understanding of the numerical values in such a system, enabling projections for feasibility of new projects.

Wireless Power Transfer and Data Communication for Intracranial Neural Recording Applications

Wireless Power Transfer and Data Communication for Intracranial Neural Recording Applications PDF Author: Kerim Türe
Publisher: Springer Nature
ISBN: 3030408264
Category : Technology & Engineering
Languages : en
Pages : 119

Get Book Here

Book Description
This book describes new circuits and systems for implantable wireless neural monitoring systems and explains the design of a batteryless, remotely-powered implantable micro-system, designed for continuous neural monitoring. Following new trends in implantable biomedical applications, the authors demonstrate a system which is capable of efficient remote powering and reliable data communication. Novel architecture and design methodologies are used for low power and small area wireless communication link. Additionally, hermetically sealed packaging and in-vivo validation of the implantable device is presented.

Wireless Power Transfer and Data Communication for Intracranial Neural Implants Case Study

Wireless Power Transfer and Data Communication for Intracranial Neural Implants Case Study PDF Author: Gürkan Yilmaz
Publisher:
ISBN:
Category :
Languages : en
Pages : 122

Get Book Here

Book Description


Indwelling Neural Implants

Indwelling Neural Implants PDF Author: William M. Reichert
Publisher: CRC Press
ISBN: 1420009303
Category : Medical
Languages : en
Pages : 300

Get Book Here

Book Description
Despite enormous advances made in the development of external effector prosthetics over the last quarter century, significant questions remain, especially those concerning signal degradation that occurs with chronically implanted neuroelectrodes. Offering contributions from pioneering researchers in neuroprosthetics and tissue repair, Indwel

Remote Powering and Data Communication for Implanted Biomedical Systems

Remote Powering and Data Communication for Implanted Biomedical Systems PDF Author: Enver Gurhan Kilinc
Publisher: Springer
ISBN: 331921179X
Category : Technology & Engineering
Languages : en
Pages : 152

Get Book Here

Book Description
This book describes new circuits and systems for implantable biomedical applications and explains the design of a batteryless, remotely-powered implantable micro-system, designed for long-term patient monitoring. Following new trends in implantable biomedical applications, the authors demonstrate a system which is capable of efficient, remote powering and reliable data communication. Novel architecture and design methodologies are used to transfer power with a low-power, optimized inductive link and data is transmitted by a reliable communication link. Additionally, an electro-mechanical solution is presented for tracking and monitoring the implantable system, while the patient is mobile.

Short-Range Wireless Communication

Short-Range Wireless Communication PDF Author: Jiwoong Park
Publisher:
ISBN:
Category :
Languages : en
Pages : 139

Get Book Here

Book Description
This dissertation presents energy-efficient schemes for short-range wireless communication for wearable devices. Generally, there are two types of wireless scenarios that happen around the human body. The first case is the data transfer between the wearable devices and the local hub devices, e.g., smartphones and smartwatches, allowing to connect to the external network and centrally control multiple wearable devices. Many researchers had proposed various wireless approaches for this scenario; however, there are still limitations in realistic implementations such as restricted form factors and limited energy sources of wearable devices. To address the barriers and challenges of the previously proposed schemes, my doctoral research introduced a new data transmission concept around the human body using magnetic fields, showing the theoretical background and experimental results that validate that the human body acts as a leaky dielectric waveguide. To demonstrate that the proposed concept can be implemented in the practical application, e.g., Hi-Fi audio streaming for portable headphones, this dissertation describes the design procedure and its measurement results of an energy-efficient ultra-low-power transceiver fabricated with CMOS technology. The other wireless scenario occurs in a single wearable device, especially a body sensor device. For the practical reasons of accurate health monitoring, the body sensor device needs to be implanted or injected inside the human body, and it should operate in a fully-wireless environment for the portability of the wearable devices. This work presents guidelines for the design and optimization of on-chip coils used for wireless millimeter-scale integrated neural implants as an example of this wireless scenario. Since available real estate of a silicon chip is limited, on-chip coil design involves difficult managing multi-dimension trade-offs amongst the number of turns, trace width and spacing, proximity to other active circuits and metalization, quality factor, matching network performance/size, and load impedance conditions, all towards achieving high data/power transfer efficiency.

Neural Interface Engineering

Neural Interface Engineering PDF Author: Liang Guo
Publisher: Springer Nature
ISBN: 3030418545
Category : Technology & Engineering
Languages : en
Pages : 436

Get Book Here

Book Description
This book provides a comprehensive reference to major neural interfacing technologies used to transmit signals between the physical world and the nervous system for repairing, restoring and even augmenting body functions. The authors discuss the classic approaches for neural interfacing, the major challenges encountered, and recent, emerging techniques to mitigate these challenges for better chronic performances. Readers will benefit from this book’s unprecedented scope and depth of coverage on the technology of neural interfaces, the most critical component in any type of neural prostheses. Provides comprehensive coverage of major neural interfacing technologies; Reviews and discusses both classic and latest, emerging topics; Includes classification of technologies to provide an easy grasp of research and trends in the field.

Energy-Efficient Integrated Biomedical Circuits and Systems for Unobtrusive Neural Recording and Wireless Body-Area Networks

Energy-Efficient Integrated Biomedical Circuits and Systems for Unobtrusive Neural Recording and Wireless Body-Area Networks PDF Author: Chul Kim
Publisher:
ISBN:
Category :
Languages : en
Pages : 164

Get Book Here

Book Description
Despite tremendous progress over the years, current brain-machine interface (BMI) systems are relatively bulky, highly invasive, and limited in their effectiveness except for highly constrained tasks such as moving a cursor on a computer screen. To improve performance of current BMI systems, it is necessary to dramatically increase spatial resolution and coverage across the brain without constraining the mobility of the subject. This calls for innovative approaches to high-density integrated neural recording and stimulation using non-invasive or minimally invasive microelectrode and custom silicon integrated circuits at extreme energy and area efficiency. In this thesis, I present energy-efficient fully integrated miniaturized implants for electrocortical recording and stimulation, and unobtrusive body-area networks systems for subcutaneous power delivery and data communication, as fundamental building blocks to next generation BMI. First I describe a fully wireless, encapsulated neural interface and acquisition chip (ENIAC) in 180nm silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology for 16-channel neural recording and stimulation including integrated 4x4 electrode array, coil antenna, and wireless power transfer and data telemetry without any external components, completely contained in less than 3mm3 volume suitable for minimally invasive surgical insertion on the cortical surface. A novel fully integrated wireless power receiver design with an RF-decoupled H-tree signal distribution network delivers 1mW power over 1 cm distance while mitigating RF interference in the sensitive analog front-end and acquisition circuits for recording of electrocorticography (ECoG) signals transmitted through the skull. Second I highlight a 1mm2 16-channel neural recording and acquisition system-on-chip in 65nm CMOS offering 92 dB input dynamic range and

High-Density Integrated Electrocortical Neural Interfaces

High-Density Integrated Electrocortical Neural Interfaces PDF Author: Sohmyung Ha
Publisher: Academic Press
ISBN: 0128151161
Category : Science
Languages : en
Pages : 212

Get Book Here

Book Description
High-Density Integrated Electrocortical Neural Interfaces provides a basic understanding, design strategies and implementation applications for electrocortical neural interfaces with a focus on integrated circuit design technologies. A wide variety of topics associated with the design and application of electrocortical neural implants are covered in this book. Written by leading experts in the field— Dr. Sohmyung Ha, Dr. Chul Kim, Dr. Patrick P. Mercier and Dr. Gert Cauwenberghs —the book discusses basic principles and practical design strategies of electrocorticography, electrode interfaces, signal acquisition, power delivery, data communication, and stimulation. In addition, an overview and critical review of the state-of-the-art research is included. These methodologies present a path towards the development of minimally invasive brain-computer interfaces capable of resolving microscale neural activity with wide-ranging coverage across the cortical surface. - Written by leading researchers in electrocorticography in brain-computer interfaces - Offers a unique focus on neural interface circuit design, from electrode to interface, circuit, powering, communication and encapsulation - Covers the newest ECoG interface systems and electrode interfaces for ECoG and biopotential sensing