Impact of Electrochemical Process on the Degradation Mechanisms of AlGaN/GaN HEMTs

Impact of Electrochemical Process on the Degradation Mechanisms of AlGaN/GaN HEMTs PDF Author: Feng Gao (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 121

Get Book Here

Book Description
AlGaN/GaN high electron mobility transistors (HEMTs) constitute a new generation of transistors with excellent electrical characteristics and great potential to replace silicon technology in the future, especially in high power and high frequency applications. However, the poor long term reliability of these devices is an important bottleneck for their wide market insertion and limits their advanced development. This thesis tackles this problem by focusing on understanding the physics behind various degradation modes and providing new quantitative models to explain these mechanisms. The first part of the thesis, Chapters 2 and 3, reports studies of the origin of permanent structural and electrical degradation in AlGaN/GaN HEMTs. Hydroxyl groups (OH-) from the environment and/or adsorbed water on the III-N surface are found to play an important role in the formation of surface pits during the OFF-state electrical stress. The mechanism of this water-related structural degradation is explained by an electrochemical cell formed at the gate edge where gate metal, the II-N surface and the passivation layer meet. Moreover, the permanent decrease of the drain current is directly linked with the formation of the surface pits, while the permanent increase of the gate current is found to be uncorrelated with the structural degradation. The second part of the thesis, Chapters 4 and 5, identifies water-related redox couples in ambient air as important sources of dynamic on-resistance and drain current collapse in AlGaN/GaN HEMTs. Through in-situ X-ray photoelectron spectroscopy (XPS), direct signature of the water-related species is found at the AlGaN surface at room temperature. It is also found that these species, as well as the current collapse, can be thermally removed above 200 °C in vacuum conditions. An electron trapping mechanism based on H2O/H2 and H2O/O2 redox couples is proposed to explain the 0.5 eV energy level commonly attributed to surface trapping states. Moreover, the role of silicon nitride passivation in successfully removing current collapse in these devices is explained by blocking the water molecules away from the AlGaN surface. Finally, fluorocarbon, a highly hydrophobic material, is proven to be an excellent passivation to overcome transient degradation mechanisms in AlGaN/GaN HEMTs.

Impact of Electrochemical Process on the Degradation Mechanisms of AlGaN/GaN HEMTs

Impact of Electrochemical Process on the Degradation Mechanisms of AlGaN/GaN HEMTs PDF Author: Feng Gao (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 121

Get Book Here

Book Description
AlGaN/GaN high electron mobility transistors (HEMTs) constitute a new generation of transistors with excellent electrical characteristics and great potential to replace silicon technology in the future, especially in high power and high frequency applications. However, the poor long term reliability of these devices is an important bottleneck for their wide market insertion and limits their advanced development. This thesis tackles this problem by focusing on understanding the physics behind various degradation modes and providing new quantitative models to explain these mechanisms. The first part of the thesis, Chapters 2 and 3, reports studies of the origin of permanent structural and electrical degradation in AlGaN/GaN HEMTs. Hydroxyl groups (OH-) from the environment and/or adsorbed water on the III-N surface are found to play an important role in the formation of surface pits during the OFF-state electrical stress. The mechanism of this water-related structural degradation is explained by an electrochemical cell formed at the gate edge where gate metal, the II-N surface and the passivation layer meet. Moreover, the permanent decrease of the drain current is directly linked with the formation of the surface pits, while the permanent increase of the gate current is found to be uncorrelated with the structural degradation. The second part of the thesis, Chapters 4 and 5, identifies water-related redox couples in ambient air as important sources of dynamic on-resistance and drain current collapse in AlGaN/GaN HEMTs. Through in-situ X-ray photoelectron spectroscopy (XPS), direct signature of the water-related species is found at the AlGaN surface at room temperature. It is also found that these species, as well as the current collapse, can be thermally removed above 200 °C in vacuum conditions. An electron trapping mechanism based on H2O/H2 and H2O/O2 redox couples is proposed to explain the 0.5 eV energy level commonly attributed to surface trapping states. Moreover, the role of silicon nitride passivation in successfully removing current collapse in these devices is explained by blocking the water molecules away from the AlGaN surface. Finally, fluorocarbon, a highly hydrophobic material, is proven to be an excellent passivation to overcome transient degradation mechanisms in AlGaN/GaN HEMTs.

AlGaN/GaN HEMTs Reliability

AlGaN/GaN HEMTs Reliability PDF Author: Ponky Ivo
Publisher: Cuvillier Verlag
ISBN: 3736942591
Category : Technology & Engineering
Languages : en
Pages : 132

Get Book Here

Book Description
AlGaN/GaN HEMTs reliability and stability issues were investigated in dependence on epitaxial design and process modification. DC-Step-Stress-Tests have been performed on wafers as a fast device robustness screening method. As a criterion of robustness they deliver a critical source-drain voltage for the onset of degradation. Several degradation modes were observed which depend on epi design, epi quality and process technology. Electrical and optical characterizations together with electric field simulations were performed to get insight into respective degradation modes. It has been found that AlGaN/GaN HEMT devices with GaN cap show higher critical source-drain voltages as compared to non-capped devices. Devices with low Al concentration in the AlGaN barrier layer also show higher critical source-drain voltages. Superior stability and robustness performance have been achieved from devices with AlGaN backbarrier epi design grown on n-type SiC substrate. For the onset on any degradation modes the presence of high electrical fields is most decisive for ON- and OFF-state operation conditions. Therefore careful epi design to reduce high electric field is mandatory. It is also shown that epi buffer quality and growth process have a great impact on device robustness. Defects such as point defects and dislocations are assumed to be created initially during stressing and accumulated to larger defect clusters during device stressing. Electroluminescence (EL) measurements were performed to detect early degradation. Extended localized defects are resulting as bright spots at OFF-state conditions in conjunction with a gate leakage increase. AlGaN/GaN HEMTs mit unterschiedlichen epitaktischen Designs und Prozessmodifikationen wurden auf ihre Zuverlässigkeit und Stabilität untersucht. DC-Stufenstresstests wurden als Screeningmethode für die Bauelementrobustheit durchgeführt. Mit dieser Methode erhält man eine kritische Source-Drain-Spannung, die den Beginn der Degradation kennzeichnet. Verschiedene Degradationsmodi wurden beobachtet, die vom epitaxialem Design, der epitaxialen Qualität und der Prozesstechnologie abhängen. Elektrische und optische Messungen zusammen mit elektrischen Feldsimulationen wurden durchgeführt, um Einblick in das Degradationsverhalten zu bekommen. Es hat sich gezeigt, dass AlGaN/GaN HEMTs mit einer GaN Cap-Schicht eine höhere kritische Drain-Source-Spannung zeigen als Transistoren ohne diese Schicht. HEMTs mit niedriger Aluminiumkonzentration in der AlGaN-Barriere zeigen ebenfalls eine höhere kritische Drain-Source-Spannung. Transistoren mit AlGaNBackbarrier, die auf n-Typ SiC-Substraten gewachsen wurden, zeigen eine besonders hohe Stabilität und Robustheit. Für den Betrieb im ON-State als auch im OFF-State ist ein hohes elektrisches Feld entscheidend für den Beginn der Degradation. Daher sind epitaxiale Designs, die das elektrische Feld so weit wie möglich reduzieren, von großer Wichtigkeit. Es wird gezeigt, dass die Qualität der Bufferschicht und der Wachstumsprozess der epitaxierten Schichten großen Einfluß auf die Robustheit der Bauelemente haben. Zu Beginn des Stressprozesses werden Punktdefekte und Versetzungen erzeugt, die im weiteren Verlauf des Stresstests zu Agglomeration von Defektclustern führen. Der Beginn der Degradation wurde mit Hilfe der Elektrolumineszenz untersucht. Im OFF-State werden ausgedehnte lokalisierte Defekte als stark leuchtende Flecken detektiert, wobei gleichzeitig ein Anstieg der Leckströme zu beobachten ist.

State-of-the-Art Program on Compound Semiconductors 53 (SOTAPOCS 53)

State-of-the-Art Program on Compound Semiconductors 53 (SOTAPOCS 53) PDF Author: M. E. Overberg
Publisher: The Electrochemical Society
ISBN: 1607682605
Category :
Languages : en
Pages : 294

Get Book Here

Book Description


Handbook for III-V High Electron Mobility Transistor Technologies

Handbook for III-V High Electron Mobility Transistor Technologies PDF Author: D. Nirmal
Publisher: CRC Press
ISBN: 0429862520
Category : Science
Languages : en
Pages : 434

Get Book Here

Book Description
This book focusses on III-V high electron mobility transistors (HEMTs) including basic physics, material used, fabrications details, modeling, simulation, and other important aspects. It initiates by describing principle of operation, material systems and material technologies followed by description of the structure, I-V characteristics, modeling of DC and RF parameters of AlGaN/GaN HEMTs. The book also provides information about source/drain engineering, gate engineering and channel engineering techniques used to improve the DC-RF and breakdown performance of HEMTs. Finally, the book also highlights the importance of metal oxide semiconductor high electron mobility transistors (MOS-HEMT). Key Features Combines III-As/P/N HEMTs with reliability and current status in single volume Includes AC/DC modelling and (sub)millimeter wave devices with reliability analysis Covers all theoretical and experimental aspects of HEMTs Discusses AlGaN/GaN transistors Presents DC, RF and breakdown characteristics of HEMTs on various material systems using graphs and plots

Nitride Semiconductor Technology

Nitride Semiconductor Technology PDF Author: Fabrizio Roccaforte
Publisher: John Wiley & Sons
ISBN: 3527825274
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
The book "Nitride Semiconductor Technology" provides an overview of nitride semiconductors and their uses in optoelectronics and power electronics devices. It explains the physical properties of those materials as well as their growth methods. Their applications in high electron mobility transistors, vertical power devices, LEDs, laser diodes, and vertical-cavity surface-emitting lasers are discussed in detail. The book further examines reliability issues in these materials and puts forward perspectives of integrating them with 2D materials for novel high-frequency and high-power devices. In summary, it covers nitride semiconductor technology from materials to devices and provides the basis for further research.

Gallium Nitride and Silicon Carbide Power Technologies 4

Gallium Nitride and Silicon Carbide Power Technologies 4 PDF Author: K. Shenai
Publisher: The Electrochemical Society
ISBN: 1607685442
Category :
Languages : en
Pages : 312

Get Book Here

Book Description


Investigation of Electrical Bias, Mechanical Stress, Temperature and Ambient Effect on AlGaN/GaN Hemt Time-Dependent Degradation

Investigation of Electrical Bias, Mechanical Stress, Temperature and Ambient Effect on AlGaN/GaN Hemt Time-Dependent Degradation PDF Author: Amit Gupta
Publisher:
ISBN:
Category :
Languages : en
Pages : 143

Get Book Here

Book Description
AlGaN/GaN HEMT technology is promising for RF and high power applications. However commercial usability of this technology is currently hindered because of its limited electrical reliability which still remains a major concern. AlGaN/GaN HEMTs have been shown to degrade irreversibly under typical device operation and there is widespread disagreement on the underlying fundamental physics for the observed device degradation. Electrical degradation in AlGaN/GaN HEMTs due to DC stressing is studied typically by performing electrical step stress tests and a critical voltage is determined. Device degradation is characterized by changes measured in electrical parameters, such as increase in Rs and RD, decrease in IDsat, decrease in gm, Vt shift and sub-threshold change. The widely accepted theory attributes such degradation to the inverse piezoelectric effect. Electric field due to applied bias generates biaxial tensile stress which together with intrinsic stress from lattice mismatch increases the elastic energy of AlGaN layer.

Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion

Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion PDF Author: Gaudenzio Meneghesso
Publisher: Springer
ISBN: 331977994X
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book Here

Book Description
This book demonstrates to readers why Gallium Nitride (GaN) transistors have a superior performance as compared to the already mature Silicon technology. The new GaN-based transistors here described enable both high frequency and high efficiency power conversion, leading to smaller and more efficient power systems. Coverage includes i) GaN substrates and device physics; ii) innovative GaN -transistors structure (lateral and vertical); iii) reliability and robustness of GaN-power transistors; iv) impact of parasitic on GaN based power conversion, v) new power converter architectures and vi) GaN in switched mode power conversion. Provides single-source reference to Gallium Nitride (GaN)-based technologies, from the material level to circuit level, both for power conversions architectures and switched mode power amplifiers; Demonstrates how GaN is a superior technology for switching devices, enabling both high frequency, high efficiency and lower cost power conversion; Enables design of smaller, cheaper and more efficient power supplies.

Gallium Nitride (GaN)

Gallium Nitride (GaN) PDF Author: Farid Medjdoub
Publisher: CRC Press
ISBN: 1482220040
Category : Technology & Engineering
Languages : en
Pages : 372

Get Book Here

Book Description
Addresses a Growing Need for High-Power and High-Frequency Transistors Gallium Nitride (GaN): Physics, Devices, and Technology offers a balanced perspective on the state of the art in gallium nitride technology. A semiconductor commonly used in bright light-emitting diodes, GaN can serve as a great alternative to existing devices used in microelectronics. It has a wide band gap and high electron mobility that gives it special properties for applications in optoelectronic, high-power, and high-frequency devices, and because of its high off-state breakdown strength combined with excellent on-state channel conductivity, GaN is an ideal candidate for switching power transistors. Explores Recent Progress in High-Frequency GaN Technology Written by a panel of academic and industry experts from around the globe, this book reviews the advantages of GaN-based material systems suitable for high-frequency, high-power applications. It provides an overview of the semiconductor environment, outlines the fundamental device physics of GaN, and describes GaN materials and device structures that are needed for the next stage of microelectronics and optoelectronics. The book details the development of radio frequency (RF) semiconductor devices and circuits, considers the current challenges that the industry now faces, and examines future trends. In addition, the authors: Propose a design in which multiple LED stacks can be connected in a series using interband tunnel junction (TJ) interconnects Examine GaN technology while in its early stages of high-volume deployment in commercial and military products Consider the potential use of both sunlight and hydrogen as promising and prominent energy sources for this technology Introduce two unique methods, PEC oxidation and vapor cooling condensation methods, for the deposition of high-quality oxide layers A single-source reference for students and professionals, Gallium Nitride (GaN): Physics, Devices, and Technology provides an overall assessment of the semiconductor environment, discusses the potential use of GaN-based technology for RF semiconductor devices, and highlights the current and emerging applications of GaN.

State-of-the-Art Program on Compound Semiconductors XLI and Nitride and Wide Bandgap Semiconductors for Sensors, Photonics and Electronics V

State-of-the-Art Program on Compound Semiconductors XLI and Nitride and Wide Bandgap Semiconductors for Sensors, Photonics and Electronics V PDF Author: H. M. Ng
Publisher: The Electrochemical Society
ISBN: 9781566774192
Category : Technology & Engineering
Languages : en
Pages : 616

Get Book Here

Book Description