Identification of Hybrid Dynamical Models of Human Movement Via Switched System Optimal Control

Identification of Hybrid Dynamical Models of Human Movement Via Switched System Optimal Control PDF Author: Ramanarayan Vasudevan
Publisher:
ISBN:
Category :
Languages : en
Pages : 282

Get Book Here

Book Description
The empirical observation of human locomotion has found considerable utility in the diagnosis of numerous neuromuscular pathologies. Unfortunately without the construction of a dynamical system model of the measured gait, the effectualness of these observations is restricted to just the existing diagnostic variety rather than the prediction of potential instabilities in gait or guiding the construction of user specific prosthetics. In order to construct a dynamical system model of an observed gait in an automated fashion, one requires a family of representations rich enough to describe the dynamics of gait and an automated procedure to select a particular representation capable of describing a given observation from this family. The goal of this thesis is to address these two problems. First, a hybrid dynamical system representation is introduced that is shown to be capable of describing the discontinuities in dynamics that occur during locomotion. In particular, such a representation is constructible from observation given an unconstrained Lagrangian which is intrinsic to the biped after the identification of the sequence of contact points that are enforced during the observed motion. Second, a specific hybrid dynamical system representation is shown to be constructible from observed data by optimally switching between the set of vector fields corresponding to all possible combinations of contact point enforcements. At this point an algorithm for the computation of an optimal control of constrained nonlinear switched dynamical systems is devised. The control parameter for such systems include a continuous-valued input and discrete-valued input, where the latter corresponds to the mode of the switched system that is active at a particular instance in time. The presented approach, which this thesis proves converges to local minimizers of the constrained optimal control problem, first relaxes the discrete-valued input, performs traditional optimal control, and then projects the constructed relaxed discrete-valued input back to a pure discrete-valued input by employing an extension of the classical Chattering Lemma. This algorithm is extended by formulating a computationally implementable algorithm that works by discretizing the time interval over which the switched dynamical system is defined. Importantly, this thesis proves that the implementable algorithm constructs a sequence of points by recursive application that converge to the local minimizers of the original constrained optimal control problem. Four simulation experiments are included to validate the theoretical developments and illustrate its superiority when compared to standard mixed integer optimization techniques. The thesis concludes by applying the presented algorithm to perform the identification of a hybrid dynamical system representation of two classes of gaits. The first is a synthetic gait generated by the application of feedback linearization to a classical robotic bipedal model. For this synthetic observation, the presented identification scheme is able to correctly identify the correct model. The second set of gaits is one constructed from motion capture observations of 9 subjects during a flat ground walking experiment. For each subject, the presented identification scheme determines a distinct hybrid dynamical system representation. Surprisingly, the identified models for each participant share an identical discrete structure, or an identical sequence of contact point enforcements.

Identification of Hybrid Dynamical Models of Human Movement Via Switched System Optimal Control

Identification of Hybrid Dynamical Models of Human Movement Via Switched System Optimal Control PDF Author: Ramanarayan Vasudevan
Publisher:
ISBN:
Category :
Languages : en
Pages : 282

Get Book Here

Book Description
The empirical observation of human locomotion has found considerable utility in the diagnosis of numerous neuromuscular pathologies. Unfortunately without the construction of a dynamical system model of the measured gait, the effectualness of these observations is restricted to just the existing diagnostic variety rather than the prediction of potential instabilities in gait or guiding the construction of user specific prosthetics. In order to construct a dynamical system model of an observed gait in an automated fashion, one requires a family of representations rich enough to describe the dynamics of gait and an automated procedure to select a particular representation capable of describing a given observation from this family. The goal of this thesis is to address these two problems. First, a hybrid dynamical system representation is introduced that is shown to be capable of describing the discontinuities in dynamics that occur during locomotion. In particular, such a representation is constructible from observation given an unconstrained Lagrangian which is intrinsic to the biped after the identification of the sequence of contact points that are enforced during the observed motion. Second, a specific hybrid dynamical system representation is shown to be constructible from observed data by optimally switching between the set of vector fields corresponding to all possible combinations of contact point enforcements. At this point an algorithm for the computation of an optimal control of constrained nonlinear switched dynamical systems is devised. The control parameter for such systems include a continuous-valued input and discrete-valued input, where the latter corresponds to the mode of the switched system that is active at a particular instance in time. The presented approach, which this thesis proves converges to local minimizers of the constrained optimal control problem, first relaxes the discrete-valued input, performs traditional optimal control, and then projects the constructed relaxed discrete-valued input back to a pure discrete-valued input by employing an extension of the classical Chattering Lemma. This algorithm is extended by formulating a computationally implementable algorithm that works by discretizing the time interval over which the switched dynamical system is defined. Importantly, this thesis proves that the implementable algorithm constructs a sequence of points by recursive application that converge to the local minimizers of the original constrained optimal control problem. Four simulation experiments are included to validate the theoretical developments and illustrate its superiority when compared to standard mixed integer optimization techniques. The thesis concludes by applying the presented algorithm to perform the identification of a hybrid dynamical system representation of two classes of gaits. The first is a synthetic gait generated by the application of feedback linearization to a classical robotic bipedal model. For this synthetic observation, the presented identification scheme is able to correctly identify the correct model. The second set of gaits is one constructed from motion capture observations of 9 subjects during a flat ground walking experiment. For each subject, the presented identification scheme determines a distinct hybrid dynamical system representation. Surprisingly, the identified models for each participant share an identical discrete structure, or an identical sequence of contact point enforcements.

Hybrid Dynamical Systems

Hybrid Dynamical Systems PDF Author: Andrey V. Savkin
Publisher: Springer Science & Business Media
ISBN: 1461201071
Category : Science
Languages : en
Pages : 158

Get Book Here

Book Description
This book is primarily a research monograph that presents in a unified man ner some recent research on a class of hybrid dynamical systems (HDS). The book is intended both for researchers and advanced postgraduate stu dents working in the areas of control engineering, theoretical computer science, or applied mathematics and with an interest in the emerging field of hybrid dynamical systems. The book assumes competence in the basic mathematical techniques of modern control theory. The material presented in this book derives from a period of fruitful research collaboration between the authors that began in 1994 and is still ongoing. Some of the material contained herein has appeared as isolated results in journal papers and conference proceedings. This work presents this material in an integrated and coherent manner and also presents many new results. Much of the material arose from joint work with students and colleagues, and the authors wish to acknowledge the major contributions made by Ian Petersen, Efstratios Skafidas, Valery Ugrinovskii, David Cook, Iven Mareels, and Bill Moran. There is currently no precise definition of a hybrid dynamical system; however, in broad terms it is a dynamical system that involves a mixture of discrete-valued and continuous-valued variables. Since the early 1990s, a bewildering array of results have appeared under the umbrella of HDS, ranging from the analysis of elementary on-off control systems to sophis ticated mathematical logic-based descriptions of large real-time software systems.

An Introduction to Hybrid Dynamical Systems

An Introduction to Hybrid Dynamical Systems PDF Author: Arjan J. van der Schaft
Publisher: Springer
ISBN: 1846285429
Category : Technology & Engineering
Languages : en
Pages : 189

Get Book Here

Book Description
This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.

Hybrid Systems: Computation and Control

Hybrid Systems: Computation and Control PDF Author: Magnus Egerstedt
Publisher: Springer
ISBN: 3540789294
Category : Computers
Languages : en
Pages : 692

Get Book Here

Book Description
This volume contains the proceedings ofthe 11th Workshop on Hybrid Systems: Computation and Control (HSCC 2008) held in St. Louis, Missouriduring April 22–24,2008.The annual workshop on hybrid systems focuses on researchin - bedded,reactivesystemsinvolvingtheinterplaybetweensymbolic/switchingand continuous dynamical behaviors. HSCC attracts academic as well as industrial researchers to exchange information on the latest developments of applications and theoretical advancements in the design, analysis, control, optimization, and implementation of hybrid systems, with particular attention to embedded and networked control systems. New for this year was that HSCC was part of the inaugural CPSWEEK (Cyber-Physical Systems Week) – a co-located cluster of three conferences: HSCC, RTAS (Real-Time and Embedded Technology and Applications Sym- sium), and IPSN (International Conference on Information Processing in Sensor Networks). The previous workshops in the series of HSCC were held in Berkeley, USA (1998),Nijmegen,TheNetherlands(1999),Pittsburgh,USA(2000),Rome,Italy (2001), Palo Alto, USA (2002), Prague, Czech Republic (2003), Philadelphia, USA (2004),Zurich, Switzerland (2005) , Santa Barbara,USA (2006), and Pisa, Italy (2007). We would like to thank the Program Committee members and the reviewers for an excellent job of evaluating the submissions and participating in the online Program Committee discussions. We are grateful to the Steering Committee for their helpful guidance and support. We would also like to thank Patrick Martin for putting together these proceedings, and Jiuguang Wang for developing and maintaining the HSCC 2008 website. January 2008 Magnus Egerstedt Bud Mishra Organization HSCC 2008 was technically co-sponsored by the IEEE Control Systems Society and organized in cooperation with ACM/SIGBED.

A Relaxation-Based Approach to Optimal Control of Hybrid and Switched Systems

A Relaxation-Based Approach to Optimal Control of Hybrid and Switched Systems PDF Author: Vadim Azhmyakov
Publisher: Butterworth-Heinemann
ISBN: 9780128147887
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
A Relaxation Based Approach to Optimal Control of Hybrid and Switched Systems proposes a unified approach to effective and numerically tractable relaxation schemes for optimal control problems of hybrid and switched systems. The book gives an overview of the existing (conventional and newly developed) relaxation techniques associated with the conventional systems described by ordinary differential equations. Next, it constructs a self-contained relaxation theory for optimal control processes governed by various types (sub-classes) of general hybrid and switched systems. It contains all mathematical tools necessary for an adequate understanding and using of the sophisticated relaxation techniques. In addition, readers will find many practically oriented optimal control problems related to the new class of dynamic systems. All in all, the book follows engineering and numerical concepts. However, it can also be considered as a mathematical compendium that contains the necessary formal results and important algorithms related to the modern relaxation theory.

Hybrid Dynamical Systems

Hybrid Dynamical Systems PDF Author: Andrey V. Savkin
Publisher:
ISBN: 9783764342241
Category :
Languages : en
Pages : 153

Get Book Here

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 602

Get Book Here

Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Robotics

Robotics PDF Author: Nicholas Roy
Publisher: MIT Press
ISBN: 0262315734
Category : Technology & Engineering
Languages : en
Pages : 501

Get Book Here

Book Description
Papers from a flagship conference reflect the latest developments in the field, including work in such rapidly advancing areas as human-robot interaction and formal methods. Robotics: Science and Systems VIII spans a wide spectrum of robotics, bringing together contributions from researchers working on the mathematical foundations of robotics, robotics applications, and analysis of robotics systems. This volume presents the proceedings of the eighth annual Robotics: Science and Systems (RSS) conference, held in July 2012 at the University of Sydney. The contributions reflect the exciting diversity of the field, presenting the best, the newest, and the most challenging work on such topics as mechanisms, kinematics, dynamics and control, human-robot interaction and human-centered systems, distributed systems, mobile systems and mobility, manipulation, field robotics, medical robotics, biological robotics, robot perception, and estimation and learning in robotic systems. The conference and its proceedings reflect not only the tremendous growth of robotics as a discipline but also the desire in the robotics community for a flagship event at which the best of the research in the field can be presented.

Logic-based Solution Methods for Optimal Control and Verification of Hybrid Dynamical Systems

Logic-based Solution Methods for Optimal Control and Verification of Hybrid Dynamical Systems PDF Author: Nicolò Giorgetti
Publisher:
ISBN:
Category :
Languages : en
Pages : 229

Get Book Here

Book Description


Journal of Guidance, Control, and Dynamics

Journal of Guidance, Control, and Dynamics PDF Author:
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 696

Get Book Here

Book Description