Hypercontractivity in Group von Neumann Algebras

Hypercontractivity in Group von Neumann Algebras PDF Author: Marius Junge
Publisher: American Mathematical Soc.
ISBN: 1470425653
Category : Mathematics
Languages : en
Pages : 102

Get Book Here

Book Description
In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive inequalities with respect to the Markov process given by the word length and with an even integer. Interpolation and differentiation also yield general hypercontrativity for via logarithmic Sobolev inequalities. The authors' method admits further applications to other discrete groups without small loops as far as the numerical part—which varies from one group to another—is implemented and tested on a computer. The authors also develop another combinatorial method which does not rely on computational estimates and provides (non-optimal) hypercontractive inequalities for a larger class of groups/lengths, including any finitely generated group equipped with a conditionally negative word length, like infinite Coxeter groups. The authors' second method also yields hypercontractivity bounds for groups admitting a finite dimensional proper cocycle. Hypercontractivity fails for conditionally negative lengths in groups satisfying Kazhdan's property (T).

Hypercontractivity in Group von Neumann Algebras

Hypercontractivity in Group von Neumann Algebras PDF Author: Marius Junge
Publisher: American Mathematical Soc.
ISBN: 1470425653
Category : Mathematics
Languages : en
Pages : 102

Get Book Here

Book Description
In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive inequalities with respect to the Markov process given by the word length and with an even integer. Interpolation and differentiation also yield general hypercontrativity for via logarithmic Sobolev inequalities. The authors' method admits further applications to other discrete groups without small loops as far as the numerical part—which varies from one group to another—is implemented and tested on a computer. The authors also develop another combinatorial method which does not rely on computational estimates and provides (non-optimal) hypercontractive inequalities for a larger class of groups/lengths, including any finitely generated group equipped with a conditionally negative word length, like infinite Coxeter groups. The authors' second method also yields hypercontractivity bounds for groups admitting a finite dimensional proper cocycle. Hypercontractivity fails for conditionally negative lengths in groups satisfying Kazhdan's property (T).

Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers

Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers PDF Author: Cédric Arhancet
Publisher: Springer Nature
ISBN: 3030990117
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
This book on recent research in noncommutative harmonic analysis treats the Lp boundedness of Riesz transforms associated with Markovian semigroups of either Fourier multipliers on non-abelian groups or Schur multipliers. The detailed study of these objects is then continued with a proof of the boundedness of the holomorphic functional calculus for Hodge–Dirac operators, thereby answering a question of Junge, Mei and Parcet, and presenting a new functional analytic approach which makes it possible to further explore the connection with noncommutative geometry. These Lp operations are then shown to yield new examples of quantum compact metric spaces and spectral triples. The theory described in this book has at its foundation one of the great discoveries in analysis of the twentieth century: the continuity of the Hilbert and Riesz transforms on Lp. In the works of Lust-Piquard (1998) and Junge, Mei and Parcet (2018), it became apparent that these Lp operations can be formulated on Lp spaces associated with groups. Continuing these lines of research, the book provides a self-contained introduction to the requisite noncommutative background. Covering an active and exciting topic which has numerous connections with recent developments in noncommutative harmonic analysis, the book will be of interest both to experts in no-commutative Lp spaces and analysts interested in the construction of Riesz transforms and Hodge–Dirac operators.

Harmonic Analysis and Partial Differential Equations

Harmonic Analysis and Partial Differential Equations PDF Author: Patricio Cifuentes
Publisher: American Mathematical Soc.
ISBN: 0821894331
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
This volume contains the Proceedings of the 9th International Conference on Harmonic Analysis and Partial Differential Equations, held June 11-15, 2012, in El Escorial, Madrid, Spain. Included in this volume is the written version of the mini-course given by Jonathan Bennett on Aspects of Multilinear Harmonic Analysis Related to Transversality. Also included, among other papers, is a paper by Emmanouil Milakis, Jill Pipher, and Tatiana Toro, which reflects and extends the ideas presented in the mini-course on Analysis on Non-smooth Domains delivered at the conference by Tatiana Toro. The topics of the contributed lectures cover a wide range of the field of Harmonic Analysis and Partial Differential Equations and illustrate the fruitful interplay between the two subfields.

On Non-Generic Finite Subgroups of Exceptional Algebraic Groups

On Non-Generic Finite Subgroups of Exceptional Algebraic Groups PDF Author: Alastair J. Litterick
Publisher: American Mathematical Soc.
ISBN: 1470428377
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description
The study of finite subgroups of a simple algebraic group $G$ reduces in a sense to those which are almost simple. If an almost simple subgroup of $G$ has a socle which is not isomorphic to a group of Lie type in the underlying characteristic of $G$, then the subgroup is called non-generic. This paper considers non-generic subgroups of simple algebraic groups of exceptional type in arbitrary characteristic.

From Vertex Operator Algebras to Conformal Nets and Back

From Vertex Operator Algebras to Conformal Nets and Back PDF Author: Sebastiano Carpi
Publisher: American Mathematical Soc.
ISBN: 147042858X
Category : Mathematics
Languages : en
Pages : 97

Get Book Here

Book Description
The authors consider unitary simple vertex operator algebras whose vertex operators satisfy certain energy bounds and a strong form of locality and call them strongly local. They present a general procedure which associates to every strongly local vertex operator algebra V a conformal net AV acting on the Hilbert space completion of V and prove that the isomorphism class of AV does not depend on the choice of the scalar product on V. They show that the class of strongly local vertex operator algebras is closed under taking tensor products and unitary subalgebras and that, for every strongly local vertex operator algebra V, the map W↦AW gives a one-to-one correspondence between the unitary subalgebras W of V and the covariant subnets of AV.

The Maslov Index in Symplectic Banach Spaces

The Maslov Index in Symplectic Banach Spaces PDF Author: Bernhelm Booß-Bavnbek
Publisher: American Mathematical Soc.
ISBN: 1470428008
Category : Mathematics
Languages : en
Pages : 134

Get Book Here

Book Description
The authors consider a curve of Fredholm pairs of Lagrangian subspaces in a fixed Banach space with continuously varying weak symplectic structures. Assuming vanishing index, they obtain intrinsically a continuously varying splitting of the total Banach space into pairs of symplectic subspaces. Using such decompositions the authors define the Maslov index of the curve by symplectic reduction to the classical finite-dimensional case. The authors prove the transitivity of repeated symplectic reductions and obtain the invariance of the Maslov index under symplectic reduction while recovering all the standard properties of the Maslov index. As an application, the authors consider curves of elliptic operators which have varying principal symbol, varying maximal domain and are not necessarily of Dirac type. For this class of operator curves, the authors derive a desuspension spectral flow formula for varying well-posed boundary conditions on manifolds with boundary and obtain the splitting formula of the spectral flow on partitioned manifolds.

The Planar Cubic Cayley Graphs

The Planar Cubic Cayley Graphs PDF Author: Agelos Georgakopoulos
Publisher: American Mathematical Soc.
ISBN: 1470426447
Category : Mathematics
Languages : en
Pages : 94

Get Book Here

Book Description
The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.

Type II Blow Up Manifolds for the Energy Supercritical Semilinear Wave Equation

Type II Blow Up Manifolds for the Energy Supercritical Semilinear Wave Equation PDF Author: Charles Collot
Publisher: American Mathematical Soc.
ISBN: 147042813X
Category : Mathematics
Languages : en
Pages : 176

Get Book Here

Book Description
Our analysis adapts the robust energy method developed for the study of energy critical bubbles by Merle-Rapha¨el-Rodnianski, Rapha¨el-Rodnianski and Rapha¨el- Schweyer, the study of this issue for the supercritical semilinear heat equation done by Herrero-Vel´azquez, Matano-Merle and Mizoguchi, and the analogous result for the energy supercritical Schr¨odinger equation by Merle-Rapha¨el-Rodnianski.

The Stability of Cylindrical Pendant Drops

The Stability of Cylindrical Pendant Drops PDF Author: John McCuan
Publisher: American Mathematical Soc.
ISBN: 1470409380
Category : Mathematics
Languages : en
Pages : 122

Get Book Here

Book Description
The author considers the stability of certain liquid drops in a gravity field satisfying a mixed boundary condition. He also considers as special cases portions of cylinders that model either the zero gravity case or soap films with the same kind of boundary behavior.

On Sudakov's Type Decomposition of Transference Plans with Norm Costs

On Sudakov's Type Decomposition of Transference Plans with Norm Costs PDF Author: Stefano Bianchini
Publisher: American Mathematical Soc.
ISBN: 1470427664
Category : Mathematics
Languages : en
Pages : 124

Get Book Here

Book Description
The authors consider the original strategy proposed by Sudakov for solving the Monge transportation problem with norm cost with , probability measures in and absolutely continuous w.r.t. . The key idea in this approach is to decompose (via disintegration of measures) the Kantorovich optimal transportation problem into a family of transportation problems in , where are disjoint regions such that the construction of an optimal map is simpler than in the original problem, and then to obtain by piecing together the maps . When the norm is strictly convex, the sets are a family of -dimensional segments determined by the Kantorovich potential called optimal rays, while the existence of the map is straightforward provided one can show that the disintegration of (and thus of ) on such segments is absolutely continuous w.r.t. the -dimensional Hausdorff measure. When the norm is not strictly convex, the main problems in this kind of approach are two: first, to identify a suitable family of regions on which the transport problem decomposes into simpler ones, and then to prove the existence of optimal maps. In this paper the authors show how these difficulties can be overcome, and that the original idea of Sudakov can be successfully implemented. The results yield a complete characterization of the Kantorovich optimal transportation problem, whose straightforward corollary is the solution of the Monge problem in each set and then in . The strategy is sufficiently powerful to be applied to other optimal transportation problems.